Enhanced photo catalytic degradation of methyl orange using p–n Co3O4-TiO2 hetero-junction as catalyst

Author(s):  
Muhammad Saeed ◽  
Muhammad Usman ◽  
Muhammad Ibrahim ◽  
Atta ul Haq ◽  
Iltaf Khan ◽  
...  

AbstractPhoto catalytic degradation of pollutants is one of the techniques used for treatment of dye contaminated wastewater. TiO2 has attracted much attention as photo catalyst for treatment of contaminated water. In this study, the photo catalytic performance of TiO2 has been enhanced by formation of p–n Co3O4-TiO2 hetero-junction. The p–n Co3O4-TiO2 hetero-junction was prepared by wet incipient impregnation method and characterized by various techniques. The photo catalytic activity of prepared composite was evaluated by photo degradation of methyl orange. The as prepared Co3O4-TiO2 composite was found as effective catalyst than Co3O4 and TiO2. The higher photo catalytic activity was attributed to p–n junction formed between Co3O4 and TiO2. The degradation data was analyzed according to Eley–Rideal mechanism in terms of 1st and 2nd order kinetics.

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Muhammad Saeed ◽  
Muhammad Ibrahim ◽  
Majid Muneer ◽  
Nadia Akram ◽  
Muhammad Usman ◽  
...  

Abstract Here in, we report the synthesis and characterization of ZnO–TiO2 composite as a potential photo catalyst for photo degradation of methyl orange under UV irradiation. ZnO–TiO2 with 1:1 ratio was synthesized via wet incipient impregnation method using TiO2 and Zn(NO3)2 ⋅ 6H2O as precursor material and the prepared composite was characterized by XRD, EDX and SEM. The synthesized composite was employed as photo catalyst for photo degradation of methyl orange. The photo degradation results showed that ZnO–TiO2 exhibited better catalytic performance than ZnO and TiO2 alone. The methyl orange photo degradation efficiency was determined to be 98, 75 and 60% over ZnO–TiO2, ZnO and TiO2 respectively using 50 mL solution of 100 mg/L at 40 °C for 120 min. The ZnO–TiO2 catalyzed photo degradation of methyl orange followed pseudo-first-order kinetic in terms of Langmuir–Hinshelwood mechanism.


2019 ◽  
Author(s):  
Rifat Mohammed Dakhil ◽  
Tayser Sumer Gaaz ◽  
Ahmed Al-Amiery ◽  
Mohd S. Takriff ◽  
Abdul Amir H. Kadhum

Abstract. The present work focuses on the photo-catalytic degradation of methyl orange (MO) on Erbium trioxide nanoparticles Er2O3 NPs. In this study, Er2O3 nanoparticles were synthesized and fully characterized via various techniques including; XRD diffraction, UV-Vis spectroscopy and SEM techniques. The results revealed that, the photo-catalytic activity of the prepared Er2O3 NPs towards methyl orange (MB) photo-degradation was manifested. The optimum efficiency obtained was 16 %.


2021 ◽  
Vol 21 (4) ◽  
pp. 2483-2494
Author(s):  
Aqeel Ahmed Shah ◽  
Ali Dad Chandio ◽  
Asif Ahmed Sheikh

The design of sensitive and efficient photo catalyst for the energy and environmental applications with minimum charge recombination rate and excellent photo conversion efficiency is a challenging task. Herein we have developed a nonmetal doping methodology into ZnO crystal using simple solvothermal approach. The boron (B) is induced into ZnO. The doping of B did not make any significant change on the morphology of ZnO nano rods as confirmed by scanning electron microscopy (SEM) without considerable change on periodic arrangement of nanostructures. The existence of B, Zn, and O is shown by energy dispersive spectroscopy (EDS). The X-ray diffraction (XRD) patterns are well matched to the hexagonal phase for both pristine ZnO and B-doped ZnO. The XRD has shown slight dislocation of 2theta degree. The UV-visible spectroscopy was used to measure the optical bandgap and photo catalytic activity for the degradation of organic dyes. The nonmetal doped ZnO has shown potential and outstanding photo catalytic activity for the photo degradation of methylene blue (MB), methyl orange (MO) and rhodamine B in aqueous solution. The photo degradation efficiency of MB, MO and rhodamine B is found to be 96%, 86% and 80% respectively. The enhanced photo catalytic activity of B-doped ZnO is indexed to the inhibited charge recombination rate due to the reduction in the optical bandgap. Based on the obtained results, it can be said that nonmetal doping is excellent provision for the design of active materials for the extended range of applications.


2016 ◽  
Vol 32 (1-2) ◽  
pp. 49
Author(s):  
Jemal Mohammed Yasin ◽  
O. P. Yadav ◽  
Abi M. Taddesse

Nano-size Ag-N co-doped ZnO-CuO composites have been synthesized and tested for their photo-catalytic activity towards degradation of methyl orange in aqueous solution under visible as well as UV radiations. Crystal structure, surface functional groups, metallic composition and band structure of as-synthesized nano-material were investigated using XRD, FTIR, AAS and UV-Vis spectroscopic techniques, respectively. Ag-N co-doped ZnO-CuO photocatalyst showed higher photo-catalytic activity than Ag- or N-doped and undoped composite photocatalysts. The observed highest activity of Ag-N co-doped ZnO-CuO among the studied photo-catalysts, is attributed to the cumulative effects of lowering of band-gap energy and decrease of recombination rate of photo-generated electrons and holes owing to doped N and Ag, respectively. Effects of photo-catalyst load, solution pH and substrate initial concentration on the degradation of methyl orange have also been studied.


2007 ◽  
Vol 336-338 ◽  
pp. 1956-1959
Author(s):  
Yun Ping Di ◽  
Wen Li Zhang ◽  
Li Hua Xu ◽  
Chang An Wang ◽  
Ren Bin Shi

The uniform and transparent nano-crystalline thin films of pure and co-doped with Fe3+/Sn4+ titanium dioxide photo-catalysts were prepared via sol-gel dip-coating process, and were loaded firmly on the surface of glass substrates. The structure and surface morphology of films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). In particular, the photo-catalytic activity of films was measured by ultraviolet-visible (UV-VIS) spectrophotometer. Methyl orange was used as a model compound to study the photo-catalytic activity of films. The effects of the concentrations of doping ions and the number of layers on photo-catalytic degradation of methyl orange solutions were investigated. Experimental results showed clearly that the co-doping of iron and tin ions exhibited a synergistic effect, which increased significantly the photo-catalytic activity of titanium dioxide. Especially, the photo-catalytic activity of nano-crystalline titanium dioxide thin films co-doped with 0.1 mol%Fe3+ and 11.41mol%Sn4+ was 2.0 times higher than that of those un-doped for photo-degradation of methyl orange solutions under the 125W self-ballasted fluorescent high-pressure mercury lamp irradiation.


2020 ◽  
Vol 34 (1) ◽  
pp. 123-134
Author(s):  
Muhammad Saeed ◽  
Muhammad Usman ◽  
Majid Muneer ◽  
Nadia Akram ◽  
Atta ul Haq ◽  
...  

Fe3O4 known as magnetite is one of the oxides of iron which plays a major role in various fields of sciences. Fe3O4 was synthesized by precipitation method using NH3.H2O, FeCl2.4H2O and FeCl3.6H2O as precursor materials. For synthesis of 5% Ag-Fe3O4, the green synthetic method was used for immobilization of Ag nanoparticles on Fe3O4 using leaves extract of Calotropis gigantea plant. The synthesized Fe3O4 and 5% Ag-Fe3O4 were employed as catalyst in degradation of methylene blue. The photo catalytic activity of Fe3O4 was remarkably enhanced by doping of Fe3O4 with Ag nanoparticles. Advanced instrumental techniques including XRD, EDX, TGA and SEM were used for characterization of synthesized particles. The immobilization of Ag on Fe3O4 enhanced the photo degradation of methylene blue from 40 to 72% at 40 °C which confirms that 5% Ag-Fe3O4 is an active catalyst for treatment of dye contaminated water. Ag-Fe3O4 exhibited almost same catalytic activity in two successive cycles.   Bull. Chem. Soc. Ethiop. 2020, 34(1), 123-134.  DOI: https://dx.doi.org/10.4314/bcse.v34i1.11


2017 ◽  
Vol 41 (11) ◽  
pp. 4322-4328 ◽  
Author(s):  
Qizhao Wang ◽  
Tengjiao Niu ◽  
Danhua Jiao ◽  
Yan Bai ◽  
Junbo Zhong ◽  
...  

BiOBr composites with heteropolyacids (H3PW12O40, PTA) were encapsulated within a zeolite using the impregnation method.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3347
Author(s):  
Arslan Mazhar ◽  
Asif Hussain Khoja ◽  
Abul Kalam Azad ◽  
Faisal Mushtaq ◽  
Salman Raza Naqvi ◽  
...  

Co/TiO2–MgAl2O4 was investigated in a fixed bed reactor for the dry reforming of methane (DRM) process. Co/TiO2–MgAl2O4 was prepared by modified co-precipitation, followed by the hydrothermal method. The active metal Co was loaded via the wetness impregnation method. The prepared catalyst was characterized by XRD, SEM, TGA, and FTIR. The performance of Co/TiO2–MgAl2O4 for the DRM process was investigated in a reactor with a temperature of 750 °C, a feed ratio (CO2/CH4) of 1, a catalyst loading of 0.5 g, and a feed flow rate of 20 mL min−1. The effect of support interaction with metal and the composite were studied for catalytic activity, the composite showing significantly improved results. Moreover, among the tested Co loadings, 5 wt% Co over the TiO2–MgAl2O4 composite shows the best catalytic performance. The 5%Co/TiO2–MgAl2O4 improved the CH4 and CO2 conversion by up to 70% and 80%, respectively, while the selectivity of H2 and CO improved to 43% and 46.5%, respectively. The achieved H2/CO ratio of 0.9 was due to the excess amount of CO produced because of the higher conversion rate of CO2 and the surface carbon reaction with oxygen species. Furthermore, in a time on stream (TOS) test, the catalyst exhibited 75 h of stability with significant catalytic activity. Catalyst potential lies in catalyst stability and performance results, thus encouraging the further investigation and use of the catalyst for the long-run DRM process.


Sign in / Sign up

Export Citation Format

Share Document