scholarly journals Enhancement of Transient Stability Limit and Voltage Regulation with Dynamic Loads Using Robust Excitation Control

2013 ◽  
Vol 14 (6) ◽  
pp. 561-570 ◽  
Author(s):  
Jahangir Hossain ◽  
Apel Mahmud ◽  
Naruttam K. Roy ◽  
Hemanshu R. Pota

Abstract In stressed power systems with large induction machine component, there exist undamped electromechanical modes and unstable monotonic voltage modes. This article proposes a sequential design of an excitation controller and a power system stabiliser (PSS) to stabilise the system. The operating region, with induction machines in stressed power systems, is often not captured using a linearisation around an operating point, and to alleviate this situation a robust controller is designed which guarantees stable operation in a large region of operation. A minimax linear quadratic Gaussian design is used for the design of the supplementary control to automatic voltage regulators, and a classical PSS structure is used to damp electromechanical oscillations. The novelty of this work is in proposing a method to capture the unmodelled nonlinear dynamics as uncertainty in the design of the robust controller. Tight bounds on the uncertainty are obtained using this method which enables high-performance controllers. An IEEE benchmark test system has been used to demonstrate the performance of the designed controller.

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2975 ◽  
Author(s):  
Zhenzhi Lin ◽  
Yuxuan Zhao ◽  
Shengyuan Liu ◽  
Fushuan Wen ◽  
Yi Ding ◽  
...  

Transient stability after islanding is of crucial importance because a controlled islanding strategy is not feasible if transient stability cannot be maintained in the islands created. A new indicator of transient stability for controlled islanding strategies, defined as the critical islanding time (CIT), is presented for slow coherency-based controlled islanding strategies to determine whether all the islands created are transiently stable. Then, the stable islanding interval (SII) is also defined to determine the appropriate time frame for stable islanding. Simulations were conducted on the New England test system–New York interconnected system to demonstrate the characteristics of the critical islanding time and stable islanding interval. Simulation results showed that the answer for when to island could be easily reflected by the proposed CIT and SII indicators. These two indicators are beneficial to power dispatchers to keep the power systems transiently stable and prevent widespread blackouts.


Author(s):  
Johan S. Obando ◽  
Gabriel González ◽  
Ricardo Moreno

The high integration of wind energy in power systems requires operating reserves to ensure the reliability and security in the operation. The intermittency and volatility in wind power sets a challenge for day-ahead dispatching in order to schedule generation resources. Therefore, the quantification of operating reserves is addressed in this paper using extreme values through Monte-Carlo simulations. The uncertainty in wind power forecasting is captured by a generalized extreme value distribution to generate scenarios. The day-ahead dispatching model is formulated as a mixed-integer linear quadratic problem including ramping constraints. This approach is tested in the IEEE-118 bus test system including integration of wind power in the system. The results represent the range of values for operating reserves in day-ahead dispatching.


2013 ◽  
Vol 2 (1) ◽  
pp. 78-100 ◽  
Author(s):  
Hassan Bevrani ◽  
Mehrdad Gholami ◽  
Neda Hajimohammadi

Economical harvesting of electrical energy on a large scale considering the environmental issues is a challenge. As a solution, Microgrids (MGs) promise to facilitate the widely penetration of renewable energy sources (RESs) and energy storage devices into the power systems, reduce system losses and greenhouse gas emissions, and increase the reliability of the electricity supply to the customers. Although the concept of MG is already established, the control strategies and energy management systems for MGs which cover power interchange, system stability, frequency and voltage regulation, active and reactive power control, islanding detection, grid synchronization, following contingencies and emergency conditions are still under development. Like a conventional power system, a Micro-grid (MG) needs emergency control and protection schemes to have secure and stable operation. Since MG can operate in both grid-connected and islanded mode, in addition to the control loops and protection schemes, extra issues must be considered. Transition between two operation modes requires an extra control plan to eliminate and stabilize transients due to mode changing. This paper presents an overview of the key issues and new challenges on emergency control and protection plans in the MG systems. The most important emergency control and protection schemes such as load shedding methods that have been presented over the past years are summarized.


2019 ◽  
Vol 217 ◽  
pp. 01017
Author(s):  
Nikita Tomin ◽  
Daniil Panasetsky ◽  
Alexey Iskakov

The state of the art of transient stability and steady-state (small signal) stability in power grids are reviewed. Transient stability concepts are illustrated with simple examples; in particular, we consider two machine learning-based methods for computing region of attraction: ROA produced by Neural Network Lyapunov Function; estimation of the ROA of IEEE 39-bus system using Gaussian process and Converse Lyapunov function. We discuss steady state stability in power systems, and using Prony’s modal analysis for evaluating small signal stability for the 7 Bus Test system and real French power system.


2001 ◽  
Vol 21 (10) ◽  
pp. 60-60 ◽  
Author(s):  
Y. Guo ◽  
D. J. Hill ◽  
Y. Wang

2013 ◽  
Vol 2 (3) ◽  
pp. 216
Author(s):  
Rekha Chaudhary ◽  
Arun Kumar Singh

The objective of this paper is to design controller for non-linear power system using Direct Feedback Linearization technique to improve the transient stability and to achieve better voltage regulation. In case of fault in the power system, power angle and the terminal voltage are the parameters which are to be monitored. The simulation has been carried out taking different values of initial power angles and results were obtained for power angle and terminal voltage. To overcome the demerits of DFL-LQ optimal controller and DFL voltage regulator, co-ordinated controller is proposed. Simulation results show that transient stability of a power system under a large sudden fault has been improved by using co-ordinated controller.


2012 ◽  
Vol 2012 ◽  
pp. 1-19
Author(s):  
G. Ozdemir Dag ◽  
Mustafa Bagriyanik

The unscheduled power flow problem needs to be minimized or controlled as soon as possible in a deregulated power system since the transmission systems are mostly operated at their power-carrying limits or very close to it. The time spent for simulations to determine the current states of all the system and control variables of the interconnected power system is important. Taking necessary action in case of any failure of equipment or any other occurrence of an undesired situation could be critical. Using supercomputing facilities and parallel computing techniques together decreases the computation time greatly. In this study, a parallel implementation of a multiobjective optimization approach based on both genetic algorithms and fuzzy decision making to manage unscheduled flows is presented. Parallel computation techniques are applied using supercomputers (high-performance computers). The proposed method is applied to the IEEE 300 bus test system. Two different cases for some parameters of GA are considered to see the power of parallel computation technique. Then the simulation results are presented.


Sign in / Sign up

Export Citation Format

Share Document