A Kalman Filter Based Technique for Stator Turn-Fault Detection of the Induction Motors

Author(s):  
Teymoor Ghanbari ◽  
Haidar Samet

AbstractMonitoring of the Induction Motors (IMs) through stator current for different faults diagnosis has considerable economic and technical advantages in comparison with the other techniques in this content. Among different faults of an IM, stator and bearing faults are more probable types, which can be detected by analyzing signatures of the stator currents. One of the most reliable indicators for fault detection of IMs is lower sidebands of power frequency in the stator currents. This paper deals with a novel simple technique for detecting stator turn-fault of the IMs. Frequencies of the lower sidebands are determined using the motor specifications and their amplitudes are estimated by a Kalman Filter (KF). Instantaneous Total Harmonic Distortion (ITHD) of these harmonics is calculated. Since variation of the ITHD for the three-phase currents is considerable in case of stator turn-fault, the fault can be detected using this criterion, confidently. Different simulation results verify high performance of the proposed method. The performance of the method is also confirmed using some experiments.

Author(s):  
Mo. Suhel A. Shaikh ◽  
Rakesh Maurya

Abstract This paper deals with the performance analysis of different PWM techniques for three-phase and dual three-phase induction motors. In this paper, the dual three-phase induction motor is reconnected as a three-phase and six-phase winding configurations and its performances are investigated. The comparative evaluation for the aforesaid machine configurations are carried out in terms of quality of stator current waveform with different PWM techniques. Total harmonic distortion are obtained in terms of harmonic distortion factor for stator current. The theoretical findings are further verified through simulation and experimental results.


Author(s):  
Ahmed Thamer Radhi ◽  
Wael Hussein Zayer

The paper deals with faults diagnosis method proposed to detect the inter-turn and turn to earth short circuit in stator winding of three-phase high-speed solid rotor induction motors. This method based on negative sequence current of motor and fuzzy neural network algorithm. On the basis of analysis of 2-D electromagnet field in the solid rotor the rotor impedance has been derived to develop the solid rotor induction motor equivalent circuit. The motor equivalent circuit is simulated by MATLAB software to study and record the data for training and testing the proposed diagnosis method. The numerical results of proposed approach are evaluated using simulation of a three-phase high-speed solid-rotor induction motor of two-pole, 140 Hz. The results of simulation shows that the proposed diagnosis method is fast and efficient for detecting inter-turn and turn to earth faults in stator winding of high-speed solid-rotor induction motors with different faults conditions


ELKHA ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 122
Author(s):  
Andri Pradipta ◽  
Santi Triwijaya ◽  
Mohamad Ridwan

Induction motors are widely used in industrial processes, vehicles and automation. Three-phase induction motors can be used for traction systems on electric locomotives. In this case, the speed control system is an important thing that must be applied to the propulsion system. This study aimed to test the indirect torque control for a Three-phase induction motor. A proportional integral (PI) controller was applied for speed controller. The indirect torque control system was modeled and simulated using PSIM software. According to the result, the control method showed a good performance. The speed could be maintained even the speed reference was changing or a load was applied. The steady state error of the speed response was just 0.1% with rise time around 0.06 s. The stator current went up to 39.5 A in starting condition. The stator current reached 12 A rms when the load of 10 Nm was applied. Then, the current rose to 15.7 A rms when the load was increased to 40 Nm and the current came down to 12.8 A rms when the load was decreased to 20 Nm.


Author(s):  
K. Vinoth Kumar ◽  
Prawin Angel Michael

This chapter deals with the diagnosis of induction motors (IM) with the so-called motor current signature analysis (MCSA). The MCSA is one of the most efficient techniques for the detection and the localization of electrical and mechanical failures, in which faults become apparent by harmonic components around the supply frequency. This chapter presents a summary of the most frequent faults and its consequences on the stator current spectrum of an IM. A three-phase IM model was used for simulation taking into account in one hand the normal healthy operation and in the other hand the broken rotor bars, the shorted turns in the stator windings, the voltage unbalance between phases of supply, and the abnormal behavior of load. The MCSA is used by many authors in literature for faults detection of IM. The major contribution of this work is to prove the efficiency of this diagnosis methodology to detect different faults simultaneously, in normal and abnormal functional conditions. The results illustrate good agreement between both simulated and experimental results.


Sign in / Sign up

Export Citation Format

Share Document