scholarly journals Performance and Analysis of Indirect Torque Control-Based Three-Phase Induction Motor

ELKHA ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 122
Author(s):  
Andri Pradipta ◽  
Santi Triwijaya ◽  
Mohamad Ridwan

Induction motors are widely used in industrial processes, vehicles and automation. Three-phase induction motors can be used for traction systems on electric locomotives. In this case, the speed control system is an important thing that must be applied to the propulsion system. This study aimed to test the indirect torque control for a Three-phase induction motor. A proportional integral (PI) controller was applied for speed controller. The indirect torque control system was modeled and simulated using PSIM software. According to the result, the control method showed a good performance. The speed could be maintained even the speed reference was changing or a load was applied. The steady state error of the speed response was just 0.1% with rise time around 0.06 s. The stator current went up to 39.5 A in starting condition. The stator current reached 12 A rms when the load of 10 Nm was applied. Then, the current rose to 15.7 A rms when the load was increased to 40 Nm and the current came down to 12.8 A rms when the load was decreased to 20 Nm.

2009 ◽  
Vol 22 (2) ◽  
pp. 183-195
Author(s):  
Ján Vittek ◽  
Vladimir Vavrús ◽  
Jozef Buday ◽  
Jozef Kuchta

The paper presents design and verification of Forced Dynamics Control of an actuator with linear permanent magnet synchronous motor. This control method is a relatively new one and offers an accurate realization of a dynamic speed response, which can be selected for given application by the user. In addition to this, the angle between stator current vector and moving part flux vector is maintained mutually perpendicular as it is under conventional vector control. To achieve prescribed speed response derived control law requires estimation of an external force, which is obtained from the set of observers. The first observer works in pseudo-sliding mode and observes speed of moving part while the second one has filtering effect for elimination of the previous one chattering. The overall control system is verified by simulations and experimentally. Preliminary experiments confirmed that the moving part speed response follows the prescribed one fairly closely.


2014 ◽  
Vol 573 ◽  
pp. 155-160
Author(s):  
A. Pandian ◽  
R. Dhanasekaran

This paper presents improved Fuzzy Logic Controller (FLC) of the Direct Torque Control (DTC) of Three-Phase Induction Motor (IM) for high performance and torque control industrial drive applications. The performance of the IM using PI Controllers and general fuzzy controllers are meager level under load disturbances and transient conditions. The FLC is extended to have a less computational burden which makes it suitable for real time implementation particularly at constant speed and torque disturbance operating conditions. Hybrid control has advantage of integrating a superiority of two or more control techniques for better control performances. A fuzzy controller offers better speed responses for startup and large speed errors. If the nature of the load torque is varied, the steady state speed error of DTC based IM drive with fuzzy logic controller becomes significant. To improve the performance of the system, a new control method, Hybrid fuzzy PI control is proposed. The effectiveness of proposed method is verified by simulation based on MATLAB. The proposed Hybrid fuzzy controller has adaptive control over load toque variation and can maintain constant speed.


The use of Induction Motor (IM) has been increased becuase of it’s robust construction , simple design , and low cost . This paper presents a methodology for the application and performance of Fuzzy like PI Controller to set the frequency of Space Vector Pulse-Width modualtion (SVPWM) Inverter applied to closed loop speed control of IM. When the controller is used with current controller, the quadratic component of stator current is estimated by the controller. Instead of using current controller, this paper proposes estimating the frequency of stator voltage. The dyanamic modelling of the IM is presented by dq axis theory. From the simulation results, the superiority of the suggested controller can be observed in controlling the speed of the three-phase IM.


2020 ◽  
Vol 7 (2) ◽  
Author(s):  
Mokh. Suseno Aji Sari ◽  
Hadi Suyono ◽  
Abraham Lomi

This research was conducted to regulate the three phase induction motor speed regulation system. Changes in load on the motor affect the motor speed response so it does not match the set point speed. This study uses the Direct Torque Control (DTC) method in regulating the speed of an induction motor. The DTC method is a vector control method that is directly assigned to the inverter. DTC method in controlling speed based on Proportional Integral Differential (PID) control. Determination of PID tunning using two methods, namely, ziegler-nichols and cohen-coon method. The ziegler-nichols method have overshoot speeds starting at 0.8% of the setpoint, whereas using the cohen coon method there is no overshoot and the speed at stable conditions matches the setpoint.


Author(s):  
Mo. Suhel A. Shaikh ◽  
Rakesh Maurya

Abstract This paper deals with the performance analysis of different PWM techniques for three-phase and dual three-phase induction motors. In this paper, the dual three-phase induction motor is reconnected as a three-phase and six-phase winding configurations and its performances are investigated. The comparative evaluation for the aforesaid machine configurations are carried out in terms of quality of stator current waveform with different PWM techniques. Total harmonic distortion are obtained in terms of harmonic distortion factor for stator current. The theoretical findings are further verified through simulation and experimental results.


2011 ◽  
Vol 128-129 ◽  
pp. 771-774
Author(s):  
Jian Sun ◽  
Qiang Wang ◽  
Jian Xiu Xiao

Considering the nonlinearity and strong coupling of AC induction motor, a co-evolutionary control method is proposed for it,based on this method, distribution function is introduced to regulate the probabilities of individuals production to promote the speed of evolutionary according to the characteristic of control system . Compared with the traditional genetic algorithm, the searching space has been decreased greatly by the method. Furthermore, tested on AC induction motor, the controller in this paper has the traits of high-speed response and small overshoot so on.


The most universally used electric motor is an induction motor fed with three phase supply and eighty percent of mechanical power utilized by industries is given by three phase asynchronous ac motor. Direct torque control method is one such technique for controlling flux and torque of an asynchronous motor fed with PWM VSI. Without any complex control algorithms, it provides easy commands for the control of induction motor flux as well as torque. We are demonstrating the principle of DTC of an asynchromous motor using three level hysteresis controller in this paper. Philosophy of DTC with aforementioned control method has been simulated using MATLAB/Simulink.


AVITEC ◽  
2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Paulus Setiawan

Induction motors are one type of electric motors that work based on electromagnetic induction. The problem that often arises lately is the occurrence of voltage imbalances. Unbalanced voltage is a voltage value that is not the same in a three-phase voltage system contained in the electrical power system. On the basis of these problems, it is necessary to conduct research that can analyze the dynamics of the performance of an induction motor. Dynamic analysis is done by modeling a three-phase induction motor using an arbitrary reference frame with the direct qudrature transformation method in Matlab/Simulink. In studies with voltage imbalances up to 5%, electromagnetic torque has decreased by 2.89% to 13.83% and stator current in one phase has increased by 29.1% to 245.8%.


Sign in / Sign up

Export Citation Format

Share Document