Numerical simulation of conductive heat transfer in canned celery stew and retort program adjustment by computational fluid dynamics (CFD)

Author(s):  
Arezoo Berenjforoush Azar ◽  
Yousef Ramezan ◽  
Morteza Khashehchi

AbstractIn this study, conductive heat transfer was investigated during sterilization in the canned celery stew. A computational fluid dynamics CFD model was developed and validated to predict the temperature profiles and determine the slowest heating zone (SHZ) during the thermal processing. The temperature profile was obtained and recorded experimentally at a point where the coldest thermal point was expected. CFD models were validated against experimental data. The results of the study showed that the SHZ was located at the geometric center of the containers (x = 5.00, y = 1.42, z = 6.75 cm), and the temperature reached 119.5 °C. Root mean square error (RMSE) was calculated and showed a good fit between both methods (RMSE = 1.03). The container geometrical center F0 was estimated to be 13.19 min. For optimization of the process, according to the stew ingredients, especially meat, F0 was about 8 min. Thus, the required holding time was decreased by 5.19 min, and the retort setting was readjusted.

2014 ◽  
Vol 11 (3) ◽  
Author(s):  
Ghazi S. Bari ◽  
Taylor N. Suess ◽  
Gary A. Anderson ◽  
Stephen P. Gent

This research investigates the effects of the sparger on flow patterns and heat transfer within a column photobioreactor (PBR) using computational fluid dynamics (CFD). This study compares two types of spargers: a porous membrane, which occupies the entire floor of the reactor, and a single sparger, which is located along the centerline of the PBR floor. The PBR is modeled using the Lagrangian–Eulerian approach. The objective of this research is to predict the performance of PBRs using CFD models, which can be used to improve the design of PBRs used to grow microalgae that are used to produce biofuels and bioproducts.


2021 ◽  
Vol 2059 (1) ◽  
pp. 012003
Author(s):  
A Burmistrov ◽  
A Raykov ◽  
S Salikeev ◽  
E Kapustin

Abstract Numerical mathematical models of non-contact oil free scroll, Roots and screw vacuum pumps are developed. Modelling was carried out with the help of software CFD ANSYS-CFX and program TwinMesh for dynamic meshing. Pumping characteristics of non-contact pumps in viscous flow with the help of SST-turbulence model were calculated for varying rotors profiles, clearances, and rotating speeds. Comparison with experimental data verified adequacy of developed CFD models.


2021 ◽  
Author(s):  
Sanaz Dianat

The research paper investigates the impact of a window’s exterior air film on the assembly temperature. The exterior air film constitutes a vital portion of a window’s insulating values. The air film increases the temperature of the window exterior pane to a temperature above ambient temperature. The air film also rises the interior glass temperature and reduces the heat transfer from the interior surface. According to computational fluid dynamics (CFD), the air film is removed in windy conditions, decreasing the window temperature on the outside as well as on the inside. The idea behind the project is to carry out an experimental procedure on three different windows to validate the CFD results, which indicates the effect of various wind speeds. Keyword: Exterior air film, computational fluid dynamics, window assembly, wind speed


2021 ◽  
Author(s):  
Sanaz Dianat

The research paper investigates the impact of a window’s exterior air film on the assembly temperature. The exterior air film constitutes a vital portion of a window’s insulating values. The air film increases the temperature of the window exterior pane to a temperature above ambient temperature. The air film also rises the interior glass temperature and reduces the heat transfer from the interior surface. According to computational fluid dynamics (CFD), the air film is removed in windy conditions, decreasing the window temperature on the outside as well as on the inside. The idea behind the project is to carry out an experimental procedure on three different windows to validate the CFD results, which indicates the effect of various wind speeds. Keyword: Exterior air film, computational fluid dynamics, window assembly, wind speed


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4660 ◽  
Author(s):  
Marcin Sosnowski

The possibility of implementing the innovative multi-disc sorption bed combined with the heat exchanger into the adsorption cooling technology is investigated experimentally and numerically in the paper. The developed in-house sorption model incorporated into the commercial computational fluid dynamics (CFD) code was applied within the analysis. The research allowed to define the design parameters of the proposed type of the sorption bed and correlate them with basic factors influencing the performance of the sorption bed and its dimensions. The designed multi-disc sorption bed is characterized by great scalability and allows to significantly expand the potential installation sites of the adsorption chillers.


Sign in / Sign up

Export Citation Format

Share Document