On the Soliton Solution and Jacobi Doubly Periodic Solution of the Fractional Coupled Schrödinger–KdV Equation by a Novel Approach

Author(s):  
S. Saha Ray

AbstractIn this paper, fractional coupled Schrödinger–Korteweg–de Vries equation (or Sch–KdV) equation with appropriate initial values has been solved by using a new novel method. The fractional derivatives are described in the Caputo sense. By using the present method, we can solve many linear and nonlinear coupled fractional differential equations. Basically, the present method originated from generalized Taylor’s formula [1]. The results reveal that the proposed method is very effective and simple for obtaining approximate solutions of fractional coupled Schrödinger–KdV equation. Numerical solutions are presented graphically to show the reliability and efficiency of the method. The method does not need linearization, weak nonlinearity assumptions or perturbation theory. The convergence of the method as applied to Sch–KdV is illustrated numerically as well as derived analytically. Moreover, the results are compared with those obtained by the Adomian decomposition method (ADM).

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Rasool Shah ◽  
Hassan Khan ◽  
Dumitru Baleanu ◽  
Poom Kumam ◽  
Muhammad Arif

AbstractIn this article, an efficient analytical technique, called Laplace–Adomian decomposition method, is used to obtain the solution of fractional Zakharov– Kuznetsov equations. The fractional derivatives are described in terms of Caputo sense. The solution of the suggested technique is represented in a series form of Adomian components, which is convergent to the exact solution of the given problems. Furthermore, the results of the present method have shown close relations with the exact approaches of the investigated problems. Illustrative examples are discussed, showing the validity of the current method. The attractive and straightforward procedure of the present method suggests that this method can easily be extended for the solutions of other nonlinear fractional-order partial differential equations.


2021 ◽  
pp. 321-321
Author(s):  
Hami Gundogdu ◽  
Ömer Gozukizil

In this paper, we are interested in obtaining an approximate numerical solution of the fractional heat equation where the fractional derivative is in Caputo sense. We also consider the heat equation with a heat source and heat loss. The fractional Laplace-Adomian decomposition method is applied to gain the approximate numerical solutions of these equations. We give the graphical representations of the solutions depending on the order of fractional derivatives. Maximum absolute error between the exact solutions and approximate solutions depending on the fractional-order are given. For the last thing, we draw a comparison between our results and found ones in the literature.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1473
Author(s):  
Ahmad Sami Bataineh ◽  
Osman Rasit Isik ◽  
Abedel-Karrem Alomari ◽  
Mohammad Shatnawi ◽  
Ishak Hashim

In this study, we introduce an efficient computational method to obtain an approximate solution of the time-dependent Emden-Fowler type equations. The method is based on the 2D-Bernstein polynomials (2D-BPs) and their operational matrices. In the cases of time-dependent Lane–Emden type problems and wave-type equations which are the special cases of the problem, the method converts the problem to a linear system of algebraic equations. If the problem has a nonlinear part, the final system is nonlinear. We analyzed the error and give a theorem for the convergence. To estimate the error for the numerical solutions and then obtain more accurate approximate solutions, we give the residual correction procedure for the method. To show the effectiveness of the method, we apply the method to some test examples. The method gives more accurate results whenever increasing n,m for linear problems. For the nonlinear problems, the method also works well. For linear and nonlinear cases, the residual correction procedure estimates the error and yields the corrected approximations that give good approximation results. We compare the results with the results of the methods, the homotopy analysis method, homotopy perturbation method, Adomian decomposition method, and variational iteration method, on the nodes. Numerical results reveal that the method using 2D-BPs is more effective and simple for obtaining approximate solutions of the time-dependent Emden-Fowler type equations and the method presents a good accuracy.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 532
Author(s):  
Shahram Rezapour ◽  
Sina Etemad ◽  
Brahim Tellab ◽  
Praveen Agarwal ◽  
Juan Luis Garcia Guirao

In this research study, we establish some necessary conditions to check the uniqueness-existence of solutions for a general multi-term ψ-fractional differential equation via generalized ψ-integral boundary conditions with respect to the generalized asymmetric operators. To arrive at such purpose, we utilize a procedure based on the fixed-point theory. We follow our study by suggesting two numerical algorithms called the Dafterdar-Gejji and Jafari method (DGJIM) and the Adomian decomposition method (ADM) techniques in which a series of approximate solutions converge to the exact ones of the given ψ-RLFBVP and the equivalent ψ-integral equation. To emphasize for the compatibility and the effectiveness of these numerical algorithms, we end this investigation by providing some examples showing the behavior of the exact solution of the existing ψ-RLFBVP compared with the approximate ones caused by DGJIM and ADM techniques graphically.


2021 ◽  
pp. 613-622
Author(s):  
Sawsan Mohsin Abed ◽  
Majeed Ahmed AL-Jawary

In this article, the numerical and approximate solutions for the nonlinear differential equation systems, represented by the epidemic SIR model, are determined. The effective iterative methods, namely the Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM), and the Banach contraction method (BCM), are used to obtain the approximate solutions. The results showed many advantages over other iterative methods, such as Adomian decomposition method (ADM) and the variation iteration method (VIM) which were applied to the non-linear terms of the Adomian polynomial and the Lagrange multiplier, respectively. Furthermore, numerical solutions were obtained by using the fourth-orde Runge-Kutta (RK4), where the maximum remaining errors showed that the methods are reliable. In addition, the fixed point theorem was used to show the convergence of the proposed methods. Our calculation was carried out with MATHEMATICA®10 to evaluate the terms of the approximate solutions.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Hassan Eltayeb ◽  
Imed Bachar ◽  
Yahya T. Abdalla

Abstract In this study, the double Laplace Adomian decomposition method and the triple Laplace Adomian decomposition method are employed to solve one- and two-dimensional time-fractional Navier–Stokes problems, respectively. In order to examine the applicability of these methods some examples are provided. The presented results confirm that the proposed methods are very effective in the search of exact and approximate solutions for the problems. Numerical simulation is used to sketch the exact and approximate solution.


2021 ◽  
Vol 22 (1) ◽  
pp. 138-166
Author(s):  
Othman Mahdi Salih ◽  
Majeed AL-Jawary

In the present paper, three reliable iterative methods are given and implemented to solve the 1D, 2D and 3D Fisher’s equation. Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM) and Banach contraction method (BCM) are applied to get the exact and numerical solutions for Fisher's equations. The reliable iterative methods are characterized by many advantages, such as being free of derivatives, overcoming the difficulty arising when calculating the Adomian polynomial boundaries to deal with nonlinear terms in the Adomian decomposition method (ADM), does not request to calculate Lagrange multiplier as in the Variational iteration method (VIM) and there is no need to create a homotopy like in the Homotopy perturbation method (HPM), or any assumptions to deal with the nonlinear term. The obtained solutions are in recursive sequence forms which can be used to achieve the closed or approximate form of the solutions. Also, the fixed point theorem was presented to assess the convergence of the proposed methods. Several examples of 1D, 2D and 3D problems are solved either analytically or numerically, where the efficiency of the numerical solution has been verified by evaluating the absolute error and the maximum error remainder to show the accuracy and efficiency of the proposed methods. The results reveal that the proposed iterative methods are effective, reliable, time saver and applicable for solving the problems and can be proposed to solve other nonlinear problems. All the iterative process in this work implemented in MATHEMATICA®12. ABSTRAK: Kajian ini berkenaan tiga kaedah berulang boleh percaya diberikan dan dilaksanakan bagi menyelesaikan 1D, 2D dan 3D persamaan Fisher. Kaedah Daftardar-Jafari (DJM), kaedah Temimi-Ansari (TAM) dan kaedah pengecutan Banach (BCM) digunakan bagi mendapatkan penyelesaian numerik dan tepat bagi persamaan Fisher. Kaedah berulang boleh percaya di kategorikan dengan pelbagai faedah, seperti bebas daripada terbitan, mengatasi masalah-masalah yang timbul apabila sempadan polinomial bagi mengurus kata tak linear dalam kaedah penguraian Adomian (ADM), tidak memerlukan kiraan pekali Lagrange sebagai kaedah berulang Variasi (VIM) dan tidak perlu bagi membuat homotopi sebagaimana dalam kaedah gangguan Homotopi (HPM), atau mana-mana anggapan bagi mengurus kata tak linear. Penyelesaian yang didapati dalam bentuk urutan berulang di mana ianya boleh digunakan bagi mencapai penyelesaian tepat atau hampiran. Juga, teorem titik tetap dibentangkan bagi menaksir kaedah bentuk hampiran. Pelbagai contoh seperti masalah 1D, 2D dan 3D diselesaikan samada secara analitik atau numerik, di mana kecekapan penyelesaian numerik telah ditentu sahkan dengan menilai ralat mutlak dan baki ralat maksimum (MER) bagi menentukan ketepatan dan kecekapan kaedah yang dicadangkan. Dapatan kajian menunjukkan kaedah berulang yang dicadangkan adalah berkesan, boleh percaya, jimat masa dan boleh guna bagi menyelesaikan masalah dan boleh dicadangkan menyelesaikan masalah tak linear lain. Semua proses berulang dalam kerja ini menggunakan MATHEMATICA®12.


Author(s):  
Ratchata Theinchai ◽  
Siriwan Chankan ◽  
Weera Yukunthorn

We investigate semianalytical solutions of Euler-Bernoulli beam equation by using Laplace transform and Adomian decomposition method (LADM). The deformation of a uniform flexible cantilever beam is formulated to initial value problems. We separate the problems into 2 cases: integer order for small deformation and fractional order for large deformation. The numerical results show the approximated solutions of deflection curve, moment diagram, and shear diagram of the presented method.


Sign in / Sign up

Export Citation Format

Share Document