Numerical Solutions for Radiative Heat Transfer in Ferrofluid Flow due to a Rotating Disk: Tiwari and Das Model

Author(s):  
M. Mustafa ◽  
Junaid Ahmad Khan ◽  
T. Hayat ◽  
A. Alsaedi

AbstractIn this paper, we explore the von-Kármán infinite disk problem for the situation where ferrofluid resides in the space above the rotating disk. Furthermore, flow field is influenced by axial magnetic field. In this study, we treat water as the base fluid which consists of homogeneous suspensions of ${\rm{F}}{{\rm{e}}_{\rm{3}}}{{\rm{O}}_{\rm{4}}}$ ferromagnetic particles. The main motivation here is to resolve heat transfer problem in the existence of non-linear radiative heat transfer. With the aid of von-Kármán relations, the equations of fluid motion and heat transfer are changed into a set of self-similar differential equations. These equations are dealt by an implicit finite-difference method with high precision. The results reveal that wall heat transfer rate can be improved by increasing solid volume fraction of ferromagnetic particles. Drag coefficient at the disk and heat transfer rate are increased as the strength of Lorentz force is enhanced. Viscous dissipation effect has an important part in improving heart transfer process which is vital in some applications. The results demonstrate that cooling capability of magnetite–water nanofluid is much superior to the conventional coolants. An excellent correlation of present results with the previous published articles is found in the all the cases.

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
M. Saleem ◽  
M. A. Hossain ◽  
Suvash C. Saha ◽  
Y. T. Gu

The effect of radiation on natural convection of Newtonian fluid contained in an open cavity is investigated in this study. The governing partial differential equations are solved numerically using the Alternate Direct Implicit method together with the Successive Overrelaxation method. The study is focused on studying the flow pattern and the convective and radiative heat transfer rates are studied for different values of radiation parameters, namely, the optical thickness of the fluid, scattering albedo, and the Planck number. It was found that, in the optically thin limit, an increase in the optical thickness of the fluid raises the temperature and radiation heat transfer of the fluid. However, a further increase in the optical thickness decreases the radiative heat transfer rate due to increase in the energy level of the fluid, which ultimately reduces the total heat transfer rate within the fluid.


2015 ◽  
Vol 70 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Fahad Munir Abbasi ◽  
Tasawar Hayat ◽  
Bashir Ahmad

AbstractPeristaltic transport of water-based nanofluids in the presence of applied magnetic field is studied. Two different types of nanofluids (silver-water and copper-water nanofluids) are used in the analysis. Effects of mixed convection, viscous dissipation, Joule heating, and heat generation/absorption are considered. Long wavelength and low Reynolds number approximations are used in the mathematical modelling. Numerical solutions are obtained for the velocity, pressure gradient, pressure rise per wavelength, temperature, and heat transfer rate at the wall. Physical quantities of interest are studied through graphs and tables. Comparison of water, silver-water, and copper-water nanofluid is presented. Results show that velocity and temperature of ordinary water are larger than those of nanofluids. Maximum velocity, temperature, and heat transfer rate at the wall of silver-water nanofluid is relatively higher than the copper-water nanofluid.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
M. Bhuvaneswari ◽  
Poo Balan Ganesan ◽  
S. Sivasankaran ◽  
K. K. Viswanathan

The present study analyzed convective heat transfer and fluid flow characteristics of nanofluid in a two-dimensional square cavity under different combinations of thermophysical models of nanofluids. The right vertical wall temperature is varying linearly with height and the left wall is maintained at low temperature whereas the horizontal walls are adiabatic. Finite volume method is used to solve the governing equations. Two models are considered to calculate the effective thermal conductivity of the nanofluid and four models are considered to calculate the effective viscosity of the nanofluid. Numerical solutions are carried out for different combinations of effective viscosity and effective thermal conductivity models with different volume fractions of nanoparticles and Rayleigh numbers. It is found that the heat transfer rate increases for Models M1 and M3 on increasing the volume fraction of the nanofluid, whereas heat transfer rate decreases for Model M4 on increasing the volume fraction of the nanoparticle. The difference among the effective dynamic viscosity models of nanofluid plays an important role here such that the average Nusselt number demonstrates an increasing or decreasing trend with the concentration of nanoparticle.


Author(s):  
V. Loganayagi ◽  
Peri K. Kameswaran

Abstract The motivation behind this article is to explore the impacts of heat transfer, magnetohydrodynamic, and hall current on two-dimensional incompressible nanofluid flow over a rotating disk. The nanofluid model utilized in the present investigation comprises the nanoparticle fraction model. Two sorts of nanoparticles to be specific Hematite (Fe2O3) is the principal source of iron and Cobalt alloy (Co64 Cr30 W6) is generally used metal alloy that is primarily Cobalt and Chromium with base fluid Motor Oil 10W30 is taken into consideration. The Prandtl number identifying with motor oil is (Pr = 1531.92). The governing equations are reduced to a system of ordinary differential equations by using Von-Karman transformation and then solved numerically utilizing matlab bvp4c. Impacts of the magnetic field, hall current, and nanoparticle volume fraction on tangential, radial velocities, and temperature profiles have been examined. Numerical outcomes have been acquired for various physical parameters through graphical representation. We have demonstrated that a remarkable reconciliation exists among the current outcomes and those in the literature for various values of magnetic parameter and velocity slip parameters, in the absence of other parameters. It is also found that radial and tangential velocities increase more in the case of Fe2O3 nanoparticles when compared with Co64 Cr30 W6 because of density variations. It is discovered that enhancement in a nanoparticle volume fraction reduces the heat transfer rate. It can moreover be clarified such a way that as the nanoparticle volume fraction raise, the density of nanoparticles increases, temperature also increases subsequently heat transfer rate decreases. This result keeps more cooling for the hard disk drives and might be intrigued for engineers.


Sign in / Sign up

Export Citation Format

Share Document