scholarly journals Tissue engineering and surgery: from translational studies to human trials

2017 ◽  
Vol 2 (4) ◽  
pp. 189-202 ◽  
Author(s):  
Jan Jeroen Vranckx ◽  
Margot Den Hondt

AbstractTissue engineering was introduced as an innovative and promising field in the mid-1980s. The capacity of cells to migrate and proliferate in growth-inducing medium induced great expectancies on generating custom-shaped bioconstructs for tissue regeneration. Tissue engineering represents a unique multidisciplinary translational forum where the principles of biomaterial engineering, the molecular biology of cells and genes, and the clinical sciences of reconstruction would interact intensively through the combined efforts of scientists, engineers, and clinicians. The anticipated possibilities of cell engineering, matrix development, and growth factor therapies are extensive and would largely expand our clinical reconstructive armamentarium. Application of proangiogenic proteins may stimulate wound repair, restore avascular wound beds, or reverse hypoxia in flaps. Autologous cells procured from biopsies may generate an ‘autologous’ dermal and epidermal laminated cover on extensive burn wounds. Three-dimensional printing may generate ‘custom-made’ preshaped scaffolds – shaped as a nose, an ear, or a mandible – in which these cells can be seeded. The paucity of optimal donor tissues may be solved with off-the-shelf tissues using tissue engineering strategies. However, despite the expectations, the speed of translation of in vitro tissue engineering sciences into clinical reality is very slow due to the intrinsic complexity of human tissues. This review focuses on the transition from translational protocols towards current clinical applications of tissue engineering strategies in surgery.

2018 ◽  
Vol 89 ◽  
pp. 265-273 ◽  
Author(s):  
Sybele Saska ◽  
Luana Carla Pires ◽  
Mariana Aline Cominotte ◽  
Larissa Souza Mendes ◽  
Marcelo Fernandes de Oliveira ◽  
...  

2018 ◽  
Vol 7 (5) ◽  
pp. 145-156 ◽  
Author(s):  
Sylvia van Kogelenberg ◽  
Zhilian Yue ◽  
Jeremy N. Dinoro ◽  
Christopher S. Baker ◽  
Gordon G. Wallace

Author(s):  
K. G. Siree ◽  
T. M. Amulya ◽  
T. M. Pramod Kumar ◽  
S. Sowmya ◽  
K. Divith ◽  
...  

Three-dimensional (3D) printing is a unique technique that allows for a high degree of customisation in pharmacy, dentistry and in designing of medical devices. 3D printing satiates the increasing exigency for consumer personalisation in these fields as custom-made medicines catering to the patients’ requirements are novel advancements in drug therapy. Current research in 3D printing indicates towards reproducing an organ in the form of a chip; paving the way for more studies and opportunities to perfecting the existing technique. In addition, we will also attempt to shed light on the impact of 3D printing in the COVID-19 pandemic.


2015 ◽  
Vol 29 (8) ◽  
pp. 933-938 ◽  
Author(s):  
Chang-Ju Park ◽  
Hyeon-Woo Kim ◽  
Sangdo Jeong ◽  
Seungwan Seo ◽  
Yangkyu Park ◽  
...  

2011 ◽  
Vol 236-238 ◽  
pp. 2744-2747
Author(s):  
Wei Dong Huang ◽  
Sheng Fang Li ◽  
Tao Zou ◽  
Xian You Xia

To elucidate the effects of implants fabricated by three-dimensional printing (3DP) technologies, a novel technique enables the complex implant release profiles, precise dosage control and rapid formulation in a single form. In this study, a unique implant with polylactic acid-based polymer powders was developed by the process. Test of the morphology and the releasing experiments in vitro of the implants were done to evaluate the implant devices. At about 100-day release of the implants in vitro, the drug concentration was measured and the profiles were made. The morphology of the implants of both technologies was characterized by three dimensional stereoscopy and environmental scanning electron microscope. The release behaviour and the microstructure were detected to compare the effects. 3DP technology allows the design and fabrication of implants with a novel micro- and macro-architecture which cannot be fabricated or may be fabricated with many difficulties in conventional technology.


Author(s):  
Hui Wang ◽  
Zhonghan Wang ◽  
He Liu ◽  
Jiaqi Liu ◽  
Ronghang Li ◽  
...  

Although there have been remarkable advances in cartilage tissue engineering, construction of irregularly shaped cartilage, including auricular, nasal, tracheal, and meniscus cartilages, remains challenging because of the difficulty in reproducing its precise structure and specific function. Among the advanced fabrication methods, three-dimensional (3D) printing technology offers great potential for achieving shape imitation and bionic performance in cartilage tissue engineering. This review discusses requirements for 3D printing of various irregularly shaped cartilage tissues, as well as selection of appropriate printing materials and seed cells. Current advances in 3D printing of irregularly shaped cartilage are also highlighted. Finally, developments in various types of cartilage tissue are described. This review is intended to provide guidance for future research in tissue engineering of irregularly shaped cartilage.


Sign in / Sign up

Export Citation Format

Share Document