scholarly journals Object orientation in the literature and in education

2018 ◽  
Vol 60 (2) ◽  
pp. 69-77
Author(s):  
Marc Berges

Abstract The efforts around the world – CS4All in the U.S. or Computing At School in Great Britain – show that computing literacy is seen as important. One important part of computer science education deals with learning programming. So, object orientation should be in focus. But what is object orientation? Several different definitions are presented, and a definition of object orientation by its fundamental concepts is introduced. Furthermore, several educational “paradigms” are discussed. Additionally, a choice of object-oriented programming languages is presented. After all that theoretical background, some exemplary implementations of object orientation in national (German) and international curricula are shown. All in all, the article provides a broad overview of the topic of object-oriented programming in computer science education.

Author(s):  
Zulhafiza Zainal Abidin ◽  
Muhammad Asyraf Abdullah Zawawi

Object-Oriented Programming (OOP) is one of the challenging concept in computer science education especially for novice programmers. To help students understand this concept, this research try to blend OOP with Augmented Reality (AR). The reason because AR can give fun aspect to the learner, which can also help learner to focus longer without distraction. For this research purpose, the target audience is 20 university students with different ability in programming and augmented reality experience. The overall results of this research show that OOP-AR received positive feedback from users. It also proved that OOP-AR is a necessary product for students who need to improvise their knowledge in OOP and its concepts and gain interest in using AR application


2021 ◽  
Vol 64 (6) ◽  
pp. 120
Author(s):  
Leah Hoffmann

ACM A.M. Turing Award recipients Alfred Aho and Jeffrey Ullman discuss their early work, the 'Dragon Book,' and the future of 'live' computer science education.


Author(s):  
Ricardo Timarán Pereira ◽  
Javier Jiménez Toledo ◽  
Anivar Chaves Torres

Resumen Para el desarrollo de software se cuenta con varios paradigmas de programación, cada uno provisto de sus metodologías, técnicas y herramientas y orientado a un determinado campo o a un conjunto de problemas, y por ende, ninguno es suficiente por sí mismo para solucionar todos los problemas que se puedan suscitar. En este artículo se presentan los resultados del proyecto de investigación que tiene como objetivo la apropiación y aplicación del modelo de programación multiparadigma con el entorno Mozart-Oz para el desarrollo de software en el programa Ingeniería de Sistemas de la Universidad de Nariño. Esta investigación se realizó en tres fases en las que se estudian y evalúan la programación estructurada y orientada a objetos, la programación funcional y la programación por restricciones, con el fin de desarrollar en los estudiantes las competencias específicas en la solución de problemas utilizando estos modelos y entorno. Palabras ClaveProgramación Multiparadigma, Entorno de Desarrollo Mozart-Oz, Aprendizaje de Lenguajes de Programación.  Abstract For software development has several programming paradigms, each equipped with their methodologies, techniques and tools aimed at a particular field or set of problems, and therefore, none is sufficient by itself to solve all problems that can inspire. This paper presents the results of the research project that aims at the appropriation and application of multiparadigm programming model with the Mozart-Oz environment for software development in the Systems Engineer program at the Universidad of Nariño. This research was conducted in three phases in which structured and object-oriented programming, functional programming and constraints programming was studied and evaluated, in order to develop in students the specific skills to solve problems using these models and environment.KeywordsMultiparadigm Programming, the Mozart-Oz Development Environment, Learning Programming Languages 


2021 ◽  
Author(s):  
◽  
David Friggens

<p>The abstract mathematical structures known as coalgebras are of increasing interest in computer science for their use in modelling certain types of data structures and programs. Traditional algebraic methods describe objects in terms of their construction, whilst coalgebraic methods describe objects in terms of their decomposition, or observational behaviour. The latter techniques are particularly useful for modelling infinite data structures and providing semantics for object-oriented programming languages, such as Java. There have been many different logics developed for reasoning about coalgebras of particular functors, most involving modal logic. We define a modal logic for coalgebras of polynomial functors, extending Rößiger’s logic [33], whose proof theory was limited to using finite constant sets, by adding an operator from Goldblatt [11]. From the semantics we define a canonical coalgebra that provides a natural construction of a final coalgebra for the relevant functor. We then give an infinitary axiomatization and syntactic proof relation that is sound and complete for functors constructed from countable constant sets.</p>


2019 ◽  
Author(s):  
Camille Akmut

The following is understood as a contribution toward a field of com-puter science education : a reflection of 5 months of learning the functionalprogramming language Haskell; out of which has emerged for us that pro-gramming languages are ‘just other programs’. This lesson, so important,is never felt more than in a functional language like Haskell, we defend. Ithas for principal benefit to bring down the barriers between creators andusers of programming languages, i.e. “programmers”, both are the same;a psychological-sociological fact not without revolutionary characteristics.


2021 ◽  
Author(s):  
◽  
David Friggens

<p>The abstract mathematical structures known as coalgebras are of increasing interest in computer science for their use in modelling certain types of data structures and programs. Traditional algebraic methods describe objects in terms of their construction, whilst coalgebraic methods describe objects in terms of their decomposition, or observational behaviour. The latter techniques are particularly useful for modelling infinite data structures and providing semantics for object-oriented programming languages, such as Java. There have been many different logics developed for reasoning about coalgebras of particular functors, most involving modal logic. We define a modal logic for coalgebras of polynomial functors, extending Rößiger’s logic [33], whose proof theory was limited to using finite constant sets, by adding an operator from Goldblatt [11]. From the semantics we define a canonical coalgebra that provides a natural construction of a final coalgebra for the relevant functor. We then give an infinitary axiomatization and syntactic proof relation that is sound and complete for functors constructed from countable constant sets.</p>


2019 ◽  
Author(s):  
Camille Akmut

The transition from ’structured programming’ to ’object-oriented pro-gramming’ is a canon of the computer science curriculum; traditionallypresented, or tacitly acknowledged, as the transition from beginner tointermediate programmer, the passage from one programming languageto multiple ones (covering CS1 and CS2, in various ways). In this otheraddition to computer science education, we defend the benefits of a com-parative approach : knowledge in one language gains the student accessto a world of other languages, and ways to model reality. This goes con-trary to prevalent methods of focusing on one language to introduce thesetopics, as common with mainstream, ”pure” computer scientists.


2018 ◽  
Vol 7 (4.38) ◽  
pp. 788 ◽  
Author(s):  
Siti Nurulain Mohd Rum ◽  
Maslina Zolkepli

It has been noted that teaching and learning programming is challenging in computer science education and that this is a universal problem. To understand and to code programs are perceived as being very challenging in computer science education. This is due to the demand for practical ability rather than theory alone. Studies have revealed that students with metacognitive management skills perform well in programming compared to lower-performing students. The more difficult the programming activity, the greater the need for the programmer to own metacognitive control skills. The cognitive processes in learning computer programming require a novice programmer to develop metacognitive skills. The main objective of this research work is to identify the metacognitive strategies in teaching and learning programming. An exploratory study was setup to identify the level of metacognition awareness of novice programmers using the MAI instrument. Interview sessions with expert lecturers were also conducted to identify the metacognitive approaches and the pedagogical method applied in the teaching and learning activities. The learning behaviours of novices were also identified through the interviewing sessions.  It can be concluded that there is a correlation between the metacognitive awareness level of an individual and their academic achievement.  


Sign in / Sign up

Export Citation Format

Share Document