scholarly journals Expression and Activity of Lysozyme in Apis Mellifera Carnica Brood Infested with Varroa Destructor

2017 ◽  
Vol 61 (2) ◽  
pp. 253-256 ◽  
Author(s):  
Ewa A. Zaobidna ◽  
Krystyna Żółtowska ◽  
Elżbieta Łopieńska-Biernat

Abstract Varroa destructor is a parasitic mite that attacks the honey bee, and previous studies have suggested that parasitosis caused by this mite is accompanied by immunosuppresion in the host. In this study, the effect of mite infestation on the expression of the lysozyme-1 (lys-1) gene and lysozyme activity in Apis mellifera carnica was determined. The experiment was carried out on the five developmental stages of honey bee workers and drones. Developmental and gender-related differences in gene expression and lysozyme activity were observed in a Varroa destructor-infested brood. The relative expression of the lys-1 gene increased in a infested worker brood and decreased in a drone brood except for P3 pupae. In the final stage of development, the lys-1 gene expression was significantly lower in infested newly emerged workers and drones. Changes in the relative expression of the lys-1 gene in infested individuals was poorly manifested at the level of enzyme activity, whereas at the two final stages of development (P5 and I) there was a positive correlation between relative lys-1 expression and lysozyme activity in infested bees of both genders (r=0.988, r=0.999, respectively). The results of this study indicate that V. destructor influences the lysozyme-linked immune response in bees.

PLoS ONE ◽  
2017 ◽  
Vol 12 (10) ◽  
pp. e0187079 ◽  
Author(s):  
Tanja Tesovnik ◽  
Ivanka Cizelj ◽  
Minja Zorc ◽  
Manuela Čitar ◽  
Janko Božič ◽  
...  

BMC Genomics ◽  
2008 ◽  
Vol 9 (1) ◽  
pp. 301 ◽  
Author(s):  
M Navajas ◽  
A Migeon ◽  
C Alaux ◽  
ML Martin-Magniette ◽  
GE Robinson ◽  
...  

2012 ◽  
Vol 58 (8) ◽  
pp. 1042-1049 ◽  
Author(s):  
Aleš Gregorc ◽  
Jay D. Evans ◽  
Mike Scharf ◽  
James D. Ellis

2011 ◽  
Vol 80 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Maja Ivana Smodiš Škerl ◽  
Mitja Nakrst ◽  
Lucija Žvokelj ◽  
Aleš Gregorc

During 2007 and 2008, natural mite mortality was recorded in honey bee colonies. These colonies were then treated with various acaricides against Varroa destructor and acaricide efficacies were evaluated. In 2007, experimental colonies were treated with flumethrin and/or oxalic acid and in 2008 the same colonies were treated with flumethrin, oxalic acid or amitraz. The efficacy of flumethrin in 2007 averaged 73.62% compared to 70.12% for three oxalic acid treatments. In 2008, a reduction of 12.52% in mite numbers was found 4 weeks after flumethrin application, while 4 oxalic acid applications produced significantly higher (P < 0.05) mite mortality, an average of 24.13%. Four consecutive amitraz fumigations produced a 93.82% reduction on average in final mite numbers and thus ensure normal colony development and overwintering. The study is important in order to demonstrate that synthetic acaricides should be constantly re-evaluated and the use of flumethrin at low efficacies need to be superseded by appropriate organic treatments to increase the efficacy of mite control in highly-infested colonies during the period of brood rearing.


Parasitology ◽  
2014 ◽  
Vol 141 (6) ◽  
pp. 770-776 ◽  
Author(s):  
MAREK FARJAN ◽  
ELŻBIETA ŁOPIEŃSKA-BIERNAT ◽  
ZBIGNIEW LIPIŃSKI ◽  
MAŁGORZATA DMITRYJUK ◽  
KRYSTYNA ŻÓŁTOWSKA

SUMMARYWe studied a total of eight developmental stages of capped brood and newly emerged workers of Apis mellifera carnica colonies naturally parasitized with Varroa destructor. During winter and early spring four colonies were fed syrup containing 1·8 mg vitamin C kg−1 (ascorbic acid group; group AA) while four colonies were fed syrup without the vitamin C (control group C). Selected elements of the antioxidative system were analysed including total antioxidant status (TAS), glutathione content and antioxidative enzyme activities (superoxide dismutase, catalase, peroxidase and glutathione S-transferase). Body weight, protein content and indices of infestation were also determined. The prevalence (8·11%) and intensity (1·15 parasite per bee) of the infestation were lower in group AA compared with group C (11·3% and 1·21, respectively). Changes in the indicators of antioxidative stress were evidence for the strengthening of the antioxidative system in the brood by administration of vitamin C. In freshly emerged worker bees of group AA, despite the infestation, protein content, TAS, and the activity of all antioxidative enzymes had significantly higher values in relation to group C.


2012 ◽  
Vol 56 (2) ◽  
pp. 61-69 ◽  
Author(s):  
Aleš Gregorc ◽  
Ivo Planinc

Abstract Experiments were conducted in three apiaries to assess the comparative efficacy of: Thymovar (Andermatt BioVet AG); Apiguard (Vita Europe Ltd., UK); an oxalic acid solution (OA) which consisted of 2.9% oxalic acid and 31.9% sugar in water; and amitraz fumigation, for controlling the honey bee mite Varroa destructor. Mite mortality increased significantly (p<0.001) in the Thymovar, Apiguard, OA or amitraz treated colonies. The relative mite mortality after: four OA applications, two Thymovar or two Apiguard applications during August and September in the Senično apiary was 41.80% (±14.31), 14.35% (±10.71), and 18.93% (±13.56), respectively. In the control, i.e. untreated colonies, the mite natural mortality was reduced by 3.10% (±3.50). In the Bohinj apiary, two Apiguard applications and a single amitraz treatment resulted in reducing the mite populations by 19.71% (±12.61) and 23.89% (±14.25), respectively. At the Mediterranean located apiary of Vipava, the Thymovar and Apiguard treatments trigged 59.02% (±17.28) and 46.50% (±13.33) of the total mite reduction. In the Vipava apiary, colonies treated with any miticide during the brood period presented no difference (P>0.05) in efficacy. The results indicate that OA, Thymovar, Apiguard or amitraz fumigations are of limited use during the brood periods.


2015 ◽  
Vol 59 (2) ◽  
pp. 85-93 ◽  
Author(s):  
Ewa A. Zaobidna ◽  
Krystyna Żółtowska ◽  
Elżbieta Łopieńska-Biernat

AbstractThe pathogenesis of varroasis has not been fully explained despite intensive research. Earlier studies suggested that parasitic infections caused by Varroa destructor mites were accompanied by immunosuppression in the host organism. The objective of this study was to analyse the influence of varroasis on one of the immune pathway in Apis mellifera measured by the expression of the prophenoloxidase (proPO) gene and the enzymatic activity of this gene’s product, phenoloxidase (EC 1.14.18.1). An evaluation was done of five developmental stages of honey bee workers and drones. The relative expression of proPO decreased in infected individuals. The only exceptions were worker prepupae (PP) and drone pupae with brown eyes and dark brown thorax (P5) where propo gene expression was 1.8-fold and 1.5-fold higher, respectively, than in the control. Phenoloxidase (PO) activity was 2.8-fold higher in infected pp workers and 2-fold higher in p5 drones in comparison with uninfected bees. Phenoloxidase activity was reduced in the remaining developmental stages of infected workers and drones. The relative expression of proPO was positively correlated with the relative PO activity in both workers (r = 0.988) and drones (r = 0.996). The results of the study indicate that V. destructor significantly influences the phenoloxidase-dependent immune pathway in honey bees.


Sign in / Sign up

Export Citation Format

Share Document