scholarly journals Requirements on Needed Frequency Bandwidth Depending on Pulse Waveforms and Their Allowed Distortion

2016 ◽  
Vol 67 (6) ◽  
pp. 459-462 ◽  
Author(s):  
Milan Sigmund ◽  
Lubomir Brancik

Abstract This paper deals with pulse signals influenced by loss of energy in high frequency band. Five types of pulses were tested and evaluated under various conditions. Achieved results can be helpful for some specific tasks in signal transmission. An example presents highest frequency of periodic pulse signals processed on printed circuit board.

2013 ◽  
Vol 427-429 ◽  
pp. 1293-1296
Author(s):  
Yan Zhong Yu ◽  
Ji Zhen Ni ◽  
Xian Hui Li

A printed inverted-F antenna for RFID tag at 5.8 GHz is designed in this paper. The antenna structure consists of an inverted-F patch, a substrate layer, and a ground plane. To reduce costs, the FR4 is selected as the material of substrate layer, which is used commonly in PCB (Printed Circuit Board). Its relative permittivity is 4.4 and a loss tangent is 0.02. The inverted-F patch and ground plane are laid on/under the substrate layer respectively. The designed antenna is modeled, simulated and optimized by using HFSS (high frequency electromagnetic simulation software). Simulation results demonstrate that the printed inverted-F antenna can satisfy the requirements of RFID Tag applications.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Sandeep Chaturvedi ◽  
Shiban K. Koul

Design, fabrication, and test results of a novel 3-layer RF package using a commonly available high frequency laminate are presented in this paper. The developed package can be manufactured using standard multilayer printed circuit board (PCB) manufacturing techniques making it cost effective for commercial applications. The package exhibits excellent RF characteristics up to 6 GHz.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. M. Islam ◽  
M. R. I. Faruque ◽  
W. Hueyshin ◽  
J. S. Mandeep ◽  
T. Islam

A double inverted F-shape patch antenna is presented for dual-band operation. The proposed antenna is comprised of circular and rectangular slots on a printed circuit board of 40 mm × 40 mm × 1.6 mm with a 50 Ω microstrip transmission line. Commercially available high frequency structural simulator (HFSS) based on the finite element method (FEM) has been adopted in this investigation. It has a measured impedance bandwidths (2 : 1 VSWR) of 18.53% on the lower band and 7.8% on the upper band, respectively. It has achieved stable radiation efficiencies of 79.76% and 80.36% with average gains of 7.82 dBi and 5.66 dBi in the operating frequency bands. Moreover, numerical simulations have been indicated as an important uniformity with measured results.


Sign in / Sign up

Export Citation Format

Share Document