scholarly journals Towards a continuous inland excess water flood monitoring system based on remote sensing data

2017 ◽  
Vol 10 (3-4) ◽  
pp. 9-15 ◽  
Author(s):  
Boudewijn van Leeuwen ◽  
Zalán Tobak ◽  
Ferenc Kovács ◽  
György Sipos

Abstract Inland excess water (IEW) is a type of flood where large flat inland areas are covered with water during a period of several weeks to months. The monitoring of these floods is needed to understand the extent and direction of development of the inundations and to mitigate their damage to the agricultural sector and build up infrastructure. Since IEW affects large areas, remote sensing data and methods are promising technologies to map these floods. This study presents the first results of a system that can monitor inland excess water over a large area with sufficient detail at a high interval and in a timely matter. The methodology is developed in such a way that only freely available satellite imagery is required and a map with known water bodies is needed to train the method to identify inundations. Minimal human interference is needed to generate the IEW maps. We will present a method describing three parallel workflows, each generating separate maps. The maps are combined to one weekly IEW map. At this moment, the method is capable of generating IEW maps for a region of over 8000 km2, but it will be extended to cover the whole Great Hungarian Plain, and in the future, it can be extended to any area where a training water map can be created.

2021 ◽  
pp. 413-422
Author(s):  
Shao Li ◽  
Xia Xu

Using remote sensing data to monitor large area drought is one of the important methods of drought monitoring at present. However, the traditional remote sensing drought monitoring methods mainly focus on monitoring single drought response factors such as soil moisture or vegetation status, and the research on comprehensive multi-factor drought monitoring is limited. In order to improve the ability to resist drought events, this paper takes Henan Province of China as an example, takes multi-source remote sensing data as data sources, considers various disaster-causing factors, adopts random forest method to model, and explores the method of regional remote sensing comprehensive drought monitoring using various remote sensing data sources. Compared with neural network, classification regression tree and linear regression, the performance of random forest is more stable and tolerant to noise and outliers. In order to provide a new method for comprehensive assessment of regional drought, a comprehensive drought monitoring model was established based on multi-source remote sensing data, which comprehensively considered the drought factors such as soil water stress, vegetation growth status and meteorological precipitation profit and loss in the process of drought occurrence and development.


2020 ◽  
Vol 12 (7) ◽  
pp. 2854 ◽  
Author(s):  
Boudewijn van Leeuwen ◽  
Zalán Tobak ◽  
Ferenc Kovács

Changing climate is expected to cause more extreme weather patterns in many parts of the world. In the Carpathian Basin, it is expected that the frequency of intensive precipitation will increase causing inland excess water (IEW) in parts of the plains more frequently, while currently the phenomenon already causes great damage. This research presents and validates a new methodology to determine the extent of these floods using a combination of passive and active remote sensing data. The method can be used to monitor IEW over large areas in a fully automated way based on freely available Sentinel-1 and Sentinel-2 remote sensing imagery. The method is validated for two IEW periods in 2016 and 2018 using high-resolution optical satellite data and aerial photographs. Compared to earlier remote sensing data-based methods, our method can be applied under unfavorite weather conditions, does not need human interaction and gives accurate results for inundations larger than 1000 m2. The overall accuracy of the classification exceeds 99%; however, smaller IEW patches are underestimated due to the spatial resolution of the input data. Knowledge on the location and duration of the inundations helps to take operational measures against the water but is also required to determine the possibilities for storage of water for dry periods. The frequent monitoring of the floods supports sustainable water management in the area better than the methods currently employed.


2019 ◽  
Vol 11 (8) ◽  
pp. 943 ◽  
Author(s):  
Alessio Domeneghetti ◽  
Guy J.-P. Schumann ◽  
Angelica Tarpanelli

This Special Issue is a collection of papers that focus on the use of remote sensing data and describe methods for flood monitoring and mapping. These articles span a wide range of topics; present novel processing techniques and review methods; and discuss limitations and challenges. This preface provides a brief overview of the content.


2014 ◽  
Vol 1073-1076 ◽  
pp. 1972-1976
Author(s):  
Jie Zhang ◽  
Hao Yan Zhao ◽  
Min Xia Zhang

With 3S comprehensive analysis on vegetation and the further development of hyper-spectral technology, the dynamic monitor of large area vegetation in long-term has become the trend. Intelligent process, combined the remote sensing data and field data, constructing dynamic monitoring model, plays an important guilding role in ecological security and balance. By using hyper-spectral remote sensing data of desert vegetation, three groups of spectral characteristic parameters were selected as input data of typical desert vegetation in the research, and vegetation types were selected as output data. Typical vegetation classifier was constructed based on the BP neural network model to study the vegetation classification.


2021 ◽  
Vol 13 (16) ◽  
pp. 3100
Author(s):  
Guanghui Qi ◽  
Chunyan Chang ◽  
Wei Yang ◽  
Peng Gao ◽  
Gengxing Zhao

Soil salinization is a significant factor affecting corn growth in coastal areas. How to use multi-source remote sensing data to achieve the target of rapid, efficient and accurate soil salinity monitoring in a large area is worth further study. In this research, using Kenli District of the Yellow River Delta as study area, the inversion of soil salinity in a corn planting area was carried out based on the integration of ground imaging hyperspectral, unmanned aerial vehicles (UAV) multispectral and Sentinel-2A satellite multispectral images. The UAV and ground images were fused, and the partial least squares inversion model was constructed by the fused UAV image. Then, inversion model was scaled up to the satellite by the TsHARP method, and finally, the accuracy of the satellite-UAV-ground inversion model and results was verified. The results show that the band fusion of UAV and ground images effectively enrich the spectral information of the UAV image. The accuracy of the inversion model constructed based on the fused UAV images was improved. The inversion results of soil salinity based on the integration of satellite-UAV-ground were highly consistent with the measured soil salinity (R2 = 0.716 and RMSE = 0.727), and the inversion model had excellent universal applicability. This research integrated the advantages of multi-source data to establish a unified satellite-UAV-ground model, which improved the ability of large-scale remote sensing data to finely indicate soil salinity.


Sign in / Sign up

Export Citation Format

Share Document