Inverse source problem for a generalized Korteweg–de Vries equation

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Anbu Arivazhagan ◽  
Kumarasamy Sakthivel ◽  
Natesan Barani Balan

AbstractIn this paper, we consider a seventh-order generalized Korteweg–de Vries (GKdV) equation and study the boundary stability results concerning the inverse problem of recovering a space-dependent source term. We establish a new boundary Carleman estimate for the seventh-order linear operator with the Dirichlet–Neumann type boundary conditions. Using this crucial estimate along with regularity result of the nonlinear GKdV equation, we establish a Lipschitz stability estimate of GKdV equation.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammed Alaoui ◽  
Abdelkarim Hajjaj ◽  
Lahcen Maniar ◽  
Jawad Salhi

AbstractIn this paper, we study an inverse source problem for a degenerate and singular parabolic system where the boundary conditions are of Neumann type. We consider a problem with degenerate diffusion coefficients and singular lower-order terms, both vanishing at an interior point of the space domain. In particular, we address the question of well-posedness of the problem, and then we prove a stability estimate of Lipschitz type in determining the source term by data of only one component. Our method is based on Carleman estimates, cut-off procedures and a reflection technique.


2016 ◽  
Vol 2016 ◽  
pp. 1-5
Author(s):  
Xianzheng Jia

We consider the inverse source problem for heat equation, where the source term has the formf(t)ϕ(x). We give a numerical algorithm to compute unknown source termf(t). Also, we give a stability estimate in the case thatf(t)is a piecewise constant function.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
El Mustapha Ait Ben Hassi ◽  
Salah-Eddine Chorfi ◽  
Lahcen Maniar

Abstract We study an inverse problem involving the restoration of two radiative potentials, not necessarily smooth, simultaneously with initial temperatures in parabolic equations with dynamic boundary conditions. We prove a Lipschitz stability estimate for the relevant potentials using a recent Carleman estimate, and a logarithmic stability result for the initial temperatures by a logarithmic convexity method, based on observations in an arbitrary subdomain.


2020 ◽  
Vol 54 (4) ◽  
pp. 1373-1413 ◽  
Author(s):  
Huaiqian You ◽  
XinYang Lu ◽  
Nathaniel Task ◽  
Yue Yu

In this paper we consider 2D nonlocal diffusion models with a finite nonlocal horizon parameter δ characterizing the range of nonlocal interactions, and consider the treatment of Neumann-like boundary conditions that have proven challenging for discretizations of nonlocal models. We propose a new generalization of classical local Neumann conditions by converting the local flux to a correction term in the nonlocal model, which provides an estimate for the nonlocal interactions of each point with points outside the domain. While existing 2D nonlocal flux boundary conditions have been shown to exhibit at most first order convergence to the local counter part as δ → 0, the proposed Neumann-type boundary formulation recovers the local case as O(δ2) in the L∞ (Ω) norm, which is optimal considering the O(δ2) convergence of the nonlocal equation to its local limit away from the boundary. We analyze the application of this new boundary treatment to the nonlocal diffusion problem, and present conditions under which the solution of the nonlocal boundary value problem converges to the solution of the corresponding local Neumann problem as the horizon is reduced. To demonstrate the applicability of this nonlocal flux boundary condition to more complicated scenarios, we extend the approach to less regular domains, numerically verifying that we preserve second-order convergence for non-convex domains with corners. Based on the new formulation for nonlocal boundary condition, we develop an asymptotically compatible meshfree discretization, obtaining a solution to the nonlocal diffusion equation with mixed boundary conditions that converges with O(δ2) convergence.


2000 ◽  
Vol 7 (3) ◽  
pp. 441-460 ◽  
Author(s):  
T. Buchukuri ◽  
O. Chkadua

Abstract Dirichlet- and Neumann-type boundary value problems of statics are considered in three-dimensional domains with cuspidal edges filled with a homogeneous anisotropic medium. Using the method of the theory of a potential and the theory of pseudodifferential equations on manifolds with boundary, we prove the existence and uniqueness theorems in Besov and Bessel-potential spaces, and study the smoothness and a complete asymptotics of solutions near the cuspidal edges.


Sign in / Sign up

Export Citation Format

Share Document