Stability and the inverse gravimetry problem with minimal data

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Victor Isakov ◽  
Aseel Titi

AbstractThe inverse problem in gravimetry is to find a domain 𝐷 inside the reference domain Ω from boundary measurements of gravitational force outside Ω. We found that about five parameters of the unknown 𝐷 can be stably determined given data noise in practical situations. An ellipse is uniquely determined by five parameters. We prove uniqueness and stability of recovering an ellipse for the inverse problem from minimal amount of data which are the gravitational force at three boundary points. In the proofs, we derive and use simple systems of linear and nonlinear algebraic equations for natural parameters of an ellipse. To illustrate the technique, we use these equations in numerical examples with various location of measurements points on \partial\Omega. Similarly, a rectangular 𝐷 is considered. We consider the problem in the plane as a model for the three-dimensional problem due to simplicity.

2004 ◽  
Vol 2004 (4) ◽  
pp. 377-410 ◽  
Author(s):  
Jan Awrejcewicz ◽  
Vadim A. Krysko ◽  
Anton V. Krysko

The present work proposes a novel optimal and exact method of solving large systems of linear algebraic equations. In the approach under consideration, the solution of a system of algebraic linear equations is found as a point of intersection of hyperplanes, which needs a minimal amount of computer operating storage. Two examples are given. In the first example, the boundary value problem for a three-dimensional stationary heat transfer equation in a parallelepiped inℝ3is considered, where boundary value problems of first, second, or third order, or their combinations, are taken into account. The governing differential equations are reduced to algebraic ones with the help of the finite element and boundary element methods for different meshes applied. The obtained results are compared with known analytical solutions. The second example concerns computation of a nonhomogeneous shallow physically and geometrically nonlinear shell subject to transversal uniformly distributed load. The partial differential equations are reduced to a system of nonlinear algebraic equations with the error ofO(hx12+hx22). The linearization process is realized through either Newton method or differentiation with respect to a parameter. In consequence, the relations of the boundary condition variations along the shell side and the conditions for the solution matching are reported.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Batoul Abdelaziz ◽  
Abdellatif El Badia ◽  
Ahmad El Hajj

<p style='text-indent:20px;'>This paper considers the problem of identifying dislocation lines of curvilinear form in three-dimensional materials from boundary measurements, when the areas surrounded by the dislocation lines are assumed to be small-sized. The objective of this inverse problem is to reconstruct the number, the initial position and certain characteristics of these dislocations and establish, using certain test functions, a Hölder stability of the centers. This paper can be considered as a generalization of [<xref ref-type="bibr" rid="b9">9</xref>], where instead of reconstructing point-wise dislocations, as done in the latter paper, our aim is to recover the parameters of line dislocations by employing a direct algebraic algorithm.</p>


2020 ◽  
Vol 30 (02) ◽  
pp. 2050026 ◽  
Author(s):  
Zahra Faghani ◽  
Fahimeh Nazarimehr ◽  
Sajad Jafari ◽  
Julien C. Sprott

In this paper, some new three-dimensional chaotic systems are proposed. The special property of these autonomous systems is their identical eigenvalues. The systems are designed based on the general form of quadratic jerk systems with 10 terms, and some systems with stable equilibria. Using a systematic computer search, 12 simple chaotic systems with identical eigenvalues were found. We believe that systems with identical eigenvalues are described here for the first time. These simple systems are listed in this paper, and their dynamical properties are investigated.


2014 ◽  
Vol 22 (3) ◽  
Author(s):  
Caifang Wang

Abstract.Diffuse optical tomography (DOT) is an optical imaging modality, which provides the spatial distribution of the optical parameters inside a random medium. A propagation back-propagation method named EM-like reconstruction method for stationary DOT problem has been proposed yet. This method is really time consuming. Hence the ordered-subsets (OS) technique for this reconstruction method is studied in this paper. The boundary measurements of DOT are grouped into nonoverlapping and overlapping ordered sequence of subsets with random partition, sequential partition and periodic partition, respectively. The performance of OS methods is compared with the standard EM-like reconstruction method with two-dimensional and three-dimensional numerical experiments. The numerical experiments indicate that reconstruction of nonoverlapping subsets with periodic partition, overlapping subsets with periodic partition and standard EM-like method provide very similar acceptable reconstruction results. However, reconstruction of nonoverlapping subsets with periodic partition spends a minimum of time to get proper results.


Author(s):  
L. Salles ◽  
M. Vahdati

The aim of this paper is to study the effects of mistuning on fan flutter and to compare the prediction of two numerical models of different fidelity. The high fidelity model used here is a three-dimensional, whole assembly, time-accurate, viscous, finite-volume compressible flow solver. The Code used for this purpose is AU3D, written in Imperial College and validated for flutter computations over many years. To the best knowledge of authors, this is the first time such computations have been attempted. This is due to the fact that, such non-linear aeroelastic computations with mistuning require large amount of CPU time and cannot be performed routinely and consequently, faster (low fidelity) models are required for this task. Therefore, the second model used here is the aeroelastic fundamental mistuning model (FMM) and it based on an eigenvalue analysis of the linearized modal aeroelastic system with the aerodynamic matrix calculated from the aerodynamic influence coefficients. The influence coefficients required for this algorithm are obtained from the time domain non-linear Code by shaking one blade in the datum (tuned) frequency and mode. Once the influence coefficients have been obtained, the computations of aero damping require minimal amount of CPU time and many different mistuning patterns can be studied. The objectives of this work are to: 1. Compare the results between the two models and establish the capabilities/limitations of aeroelastic FMM, 2. Check if the introduction of mistuning would bring the experimental and computed flutter boundaries closer, 3. Establish a relationship between mistuning and damping. A rig wide-chord fan blade, typical of modern civil designs, was used as the benchmark geometry for this study. All the flutter analyses carried out in this paper are with frequency mistuning, but the possible consequences of mistuned mode shapes are briefly discussed at the end of this paper. Only the first family of modes (1F, first flap) is considered in this work. For the frequency mistuning analysis, the 1F frequency is varied around the annulus but the 1F mode shapes remain the same for all the blades. For the mode shape mistuning computations, an FE analysis of the whole assembly different mass blades is performed. The results of this work clearly show the importance of mistuning on flutter. It also demonstrates that when using rig test data for aeroelastic validation of CFD codes, the amount mistuning present must be known. Finally, it should be noted that the aim of this paper is the study of mistuning and not steady/unsteady validation of a CFD code and therefore minimal aerodynamic data are presented.


2019 ◽  
Vol 27 (3) ◽  
pp. 341-352
Author(s):  
Seyed Majid Saberi Fathi

Abstract In this paper, the stationary photon transport equation has been extended by analytical continuation from {\mathbb{R}^{3}} to {\mathbb{C}^{3}} . A solution to the inverse problem posed by this equation is obtained on a hyper-sphere and a hyper-cylinder as X-ray and Radon transforms, respectively. We show that these results can be transformed into each other, and they agree with known results. Numerical reconstructions of a three-dimensional Shepp–Logan head phantom using the obtained inverse formula illustrate the analytical results obtained in this manuscript.


Author(s):  
Stefan Reichl ◽  
Wolfgang Steiner

This work presents three different approaches in inverse dynamics for the solution of trajectory tracking problems in underactuated multibody systems. Such systems are characterized by less control inputs than degrees of freedom. The first approach uses an extension of the equations of motion by geometric and control constraints. This results in index-five differential-algebraic equations. A projection method is used to reduce the systems index and the resulting equations are solved numerically. The second method is a flatness-based feedforward control design. Input and state variables can be parameterized by the flat outputs and their time derivatives up to a certain order. The third approach uses an optimal control algorithm which is based on the minimization of a cost functional including system outputs and desired trajectory. It has to be distinguished between direct and indirect methods. These specific methods are applied to an underactuated planar crane and a three-dimensional rotary crane.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Abdelouahab Kadem ◽  
Adem Kilicman

We consider the combined Walsh function for the three-dimensional case. A method for the solution of the neutron transport equation in three-dimensional case by using the Walsh function, Chebyshev polynomials, and the Legendre polynomials are considered. We also present Tau method, and it was proved that it is a good approximate to exact solutions. This method is based on expansion of the angular flux in a truncated series of Walsh function in the angular variable. The main characteristic of this technique is that it reduces the problems to those of solving a system of algebraic equations; thus, it is greatly simplifying the problem.


Sign in / Sign up

Export Citation Format

Share Document