Experimental Investigation and Optimization of Process Parameters Used in the Silicon Powder Mixed Electro Discharge Machining of Ti-6Al-4V Alloy Using Response Surface Methodology

2016 ◽  
Vol 16 (1) ◽  
pp. 21-32
Author(s):  
Nipun D. Gosai ◽  
Anand Y. Joshi

AbstractTi-6Al-4V is extensively used as a piece of the avionics, auto, and biomedical fields; however is a difficult to machine material. Electro Discharge machining (EDM) is seen as one of the most ideal approaches to manage machining Ti-6Al-4V combination, since it is a noncontact electro-thermal machining method, and it is self-ruling from the mechanical properties of the readied material. In EDM, dielectric plays important role in machining operation. In present paper silicon powder suspended plus kerosene is used as dielectric to explore the effect of these dielectrics on the execution criteria such as material removal rate (MRR) and roughness (Ra) in the midst of machining of titanium combination (Ti-6Al-4V). Peak current, pulse on time, pulse off time and powder included into dielectric liquid of EDM were picked as methodology parameters to think about the PMEDM execution with respect to MRR and Ra. The examinations were finished in organizing mode on an exceptionally made exploratory set up developed in laboratory. The ideal qualities for execution parameter were found by performing analysis and suggested ideal conditions have been verified by conducting confirmation experiments.

Author(s):  
Kaushik Kumar ◽  
J. Paulo Davim

Electrical Discharge Machining (EDM) process is a widely used machining process in several fabrication, construction and repair work applications. Considering Pulse-On Time, Pulse OFF time, Peak-Current and Gap voltage as the inputs and among all possible outputs, in the present work Material Removal Rate and Surface Roughness are considered as outputs. In order to reduce the number of experiments Design of Experiments (DOE) was undertaken using Orthogonal Array and later on the outputs were optimized using ANN and PSO. It was found that the results obtained from both the techniques were tallying with each other.


2015 ◽  
Vol 813-814 ◽  
pp. 304-308
Author(s):  
Nipun Gosai ◽  
Anand Joshi

Ti–6Al–4V is widely used in the aerospace, automobile, and biomedical fields, but is a difficult to machine material. Electrical discharge machining (EDM) is regarded as one of the most effective approaches to machining Ti–6Al–4V alloy, since it is a noncontact electro-thermal machining method, and it is independent from the mechanical properties of the processed material. In electro discharge machining (EDM), dielectric plays an important role during machining operation. The machining characteristics are greatly influenced by the nature of dielectric used during EDM machining. In present paper silicon powder suspended kerosene as dielectric is used to explore the influence of these dielectrics on the performance criteria such as material removal rate (MRR), tool wear rate (TWR) and surface roughness (Ra) during machining of titanium alloy (Ti-6Al-4V). Peak current, pulse on time, pulse off time and concentration of powders added into dielectric fluid of EDM were chosen as process parameters to study the PMEDM performance in terms of MRR, TWR and Ra. The experiments were carried out in planning mode on a specially designed experimental set up developed in laboratory. Response surface methodology, employing a face-centered central composite design scheme has been used to plan and analyze the experiments.


2022 ◽  
pp. 824-842
Author(s):  
Kaushik Kumar ◽  
J. Paulo Davim

Electrical Discharge Machining (EDM) process is a widely used machining process in several fabrication, construction and repair work applications. Considering Pulse-On Time, Pulse OFF time, Peak-Current and Gap voltage as the inputs and among all possible outputs, in the present work Material Removal Rate and Surface Roughness are considered as outputs. In order to reduce the number of experiments Design of Experiments (DOE) was undertaken using Orthogonal Array and later on the outputs were optimized using ANN and PSO. It was found that the results obtained from both the techniques were tallying with each other.


2018 ◽  
Vol 63 (1) ◽  
pp. 16-25 ◽  
Author(s):  
Partha Protim Das ◽  
Sunny Diyaley ◽  
Shankar Chakraborty ◽  
Ranjan Kumar Ghadai

Wire electro discharge machining (WEDM) is a versatile non-traditional machining process that is extensively in use to machine the components having intricate profiles and shapes. In WEDM, it is very important to select the optimal process parameters so as to enhance the machine performance. This paper emphasizes the selection of optimal parametric combination of WEDM process while machining on EN31 steel, using grey-fuzzy logic technique. Process parameters such as servo voltage, wire tension, pulse-on-time and pulse-off-time were considered while taking into account several multi-responses such as material removal rate (MRR) and surface roughness (SR). It was found that pulse-on-time of 115 µs, pulse-off-time of 35 µs, servo voltage of 40 V and wire tension of 5 kgf results in a larger value of grey fuzzy reasoning grade (GFRG) which tends to maximize MRR and improve SR. Finally, analysis of variance (ANOVA) is applied to check the influence of each process parameters in the estimation of GFRG.


2021 ◽  
Author(s):  
R. Palani ◽  
M. Sakthivel ◽  
V. Chithambaram ◽  
Geetha Palani

Abstract The aluminium and its alloys play a vital role in industry for their wide practical applications. In the present work, Al7075 was reinforced with Ni-Cr and graphite by Stir casting method. Further the optimization of the machined composite was done by Taguchi method. It was inferred that the MRR value of 0.056435 g/min was obtained with input parameters of 8 amps current, 52 Volt, 4 µs pulse on time, 17 µs pulse off time by machining with WEDM and SR value of 3.3 µm showing smooth surface. The material removal rate of the composite was found and the morphology of the material was analysed by SEM with associated elemental analysis by energy dispersive spectrometer (EDS). The reinforcements present in the composite were also verified. The outcome of this micro structural investigation revealed that a non-uniform distribution of graphite particles takes place at all weight percentages of graphite reinforcement.


2014 ◽  
Vol 660 ◽  
pp. 43-47
Author(s):  
Amran Ali Mohd ◽  
Suraya Laily ◽  
Aisyah Fatin ◽  
Nur Izan Syahriah Hussein ◽  
Mohd Razali Muhamad ◽  
...  

This paper investigates the performance of brass electrode on the removal of aluminium alloys LM6 (Al-Sil2) in an electrical discharge machining (EDM) die-sinking. The machining parameters such as pulse-on time, pulse-off time and peak current were selected to find the responses on the material characteristics such as material removal rate (MRR), electrode wear rate (EWR) and surface roughness (Ra). Brass with diameter of 10mm was chosen as an electrode. Orthogonal array of Taguchi method was used to develop experimental matrix and to optimize the MRR, EWR and Ra. It is found that the current is the most significantly affected the MRR, EWR and Ra while pulse on time, pulse off time and voltage are less significant factor that affected the responses. Percentage optimum value of MRR increases to 3.99%, however EWR and Ra reduce to 3.10% and 2.48% respectively. Thus, it shows that brass having capability to cut aluminium alloys LM6.


2018 ◽  
Vol 16 (3) ◽  
pp. 337 ◽  
Author(s):  
Amandeep Singh Bhui ◽  
Gurpreet Singh ◽  
Sarabjeet Singh Sidhu ◽  
Preetkanwal Singh Bains

The present study investigates optimal parameters for machining of Ti-6Al-4V using EDM with graphite electrode. Herein, another technique of modifying surface properties and enhancing machining rate using electrical discharge machining (EDM) was developed. In the present study, design of experiment (D.O.E) was developed using the Taguchi’s orthogonal array to examine the effect of the input machining factors on the machining characteristics, and to forecast the optimized EDM parameters in terms of peak current, pulse-on time, pulse-off time and applied gap voltage. Each experiment was performed to obtain a hole of 1mm depth on the workpiece. From the results, it is found that the discharge current has significant influence on material removal rate (MRR) and surface roughness (SR) followed by other selected parameters, i.e. pulse-on time, pulse-off time. The MRR augmented steeply with the current and was recorded as maximum at 4 Amps. In-vitro bioactivity test was conducted in the simulated body fluid to examine bioactivity confirming a significant apatite growth on the surface treated with ED sparks. The surface and chemical alteration were analyzed by using Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) along with the identification of the substantially enhanced morphology for clinical success.


2012 ◽  
Vol 488-489 ◽  
pp. 871-875
Author(s):  
V. Anandakrishnan ◽  
V. Senthilkumar

Copper based metal matrix composite reinforced with Boron Carbide is a newly developed Electrical Discharge Machining (EDM) electrode showing better performance than the conventional copper based electrode. Right selection of machining parameters such as current, pulse on time and pulse off time is one of the most important aspects in EDM. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Removal Rate (TRR) and Surface roughness (Ra) to machining parameters (current, pulse-on time and pulse-off time). Furthermore, a study was carried out to analyze thSubscript texte effects of machining parameters on various performance parameters such as, MRR, TRR and Ra. The results of Analysis of Variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied. Response surface modeling is used to develop surface and contour graphs to analyze the effects of EDM input parameters on outer parameters.


In the present work, the effect of process parameters on material removal rate during the machining of aluminium alloy (5086) with WEDM is studied. The four control parameter were selected i.e pulse on time (TON), pulse off time (TOFF), peak current (IP), and spark gap voltage (SV) to investigate their effects on material removal rate (MRR). Each control parameter had three levels. Total 27 experiments were done with a zinc coated brass wire of diameter 0.25 mm. Taguchi L9 orthogonal array technique was used for the experiment. ANOVA was used to find out the significance of control parameters and their contribution on MRR. It was found that maximum material removal rate was 41.52 mm3 /min which was due to high pulse on time and low pulse off time.


Author(s):  
Debal Pramanik ◽  
Dipankar Bose

An important electro-thermal process known as wire electrical discharge machining (WEDM) is applied for machining of conductive materials to generate most precisely. All cutting inaccuracies of WEDM arise out of the major cause of wire bending. At the time of cutting a sharp corner or cut profile, bending of the wire leads to a geometrical error on the workpiece. Though this type of error may be of a few hundred microns, it is not suitable for micro applications. In this research study, an experimental investigation based on response surface methodology (RSM) has been done on wire EDM of Aluminium 6061 t6 alloy. This chapter studies the outcome of input process variables (i.e., wire feed rate, pulse on time, pulse off time, and gap voltage) on machining output responses (i.e., corner inaccuracy) extensively. Experimental validation of the proposed model shows that corner inaccuracy value may be reduced by modification of input parameters.


Sign in / Sign up

Export Citation Format

Share Document