scholarly journals A Study On Machining Characteristics of Al7075-NiCr-Gr Metal Matrix Composites Through Wire – Cut Electro Discharge Machining

Author(s):  
R. Palani ◽  
M. Sakthivel ◽  
V. Chithambaram ◽  
Geetha Palani

Abstract The aluminium and its alloys play a vital role in industry for their wide practical applications. In the present work, Al7075 was reinforced with Ni-Cr and graphite by Stir casting method. Further the optimization of the machined composite was done by Taguchi method. It was inferred that the MRR value of 0.056435 g/min was obtained with input parameters of 8 amps current, 52 Volt, 4 µs pulse on time, 17 µs pulse off time by machining with WEDM and SR value of 3.3 µm showing smooth surface. The material removal rate of the composite was found and the morphology of the material was analysed by SEM with associated elemental analysis by energy dispersive spectrometer (EDS). The reinforcements present in the composite were also verified. The outcome of this micro structural investigation revealed that a non-uniform distribution of graphite particles takes place at all weight percentages of graphite reinforcement.

2018 ◽  
Vol 63 (1) ◽  
pp. 16-25 ◽  
Author(s):  
Partha Protim Das ◽  
Sunny Diyaley ◽  
Shankar Chakraborty ◽  
Ranjan Kumar Ghadai

Wire electro discharge machining (WEDM) is a versatile non-traditional machining process that is extensively in use to machine the components having intricate profiles and shapes. In WEDM, it is very important to select the optimal process parameters so as to enhance the machine performance. This paper emphasizes the selection of optimal parametric combination of WEDM process while machining on EN31 steel, using grey-fuzzy logic technique. Process parameters such as servo voltage, wire tension, pulse-on-time and pulse-off-time were considered while taking into account several multi-responses such as material removal rate (MRR) and surface roughness (SR). It was found that pulse-on-time of 115 µs, pulse-off-time of 35 µs, servo voltage of 40 V and wire tension of 5 kgf results in a larger value of grey fuzzy reasoning grade (GFRG) which tends to maximize MRR and improve SR. Finally, analysis of variance (ANOVA) is applied to check the influence of each process parameters in the estimation of GFRG.


2016 ◽  
Vol 16 (1) ◽  
pp. 21-32
Author(s):  
Nipun D. Gosai ◽  
Anand Y. Joshi

AbstractTi-6Al-4V is extensively used as a piece of the avionics, auto, and biomedical fields; however is a difficult to machine material. Electro Discharge machining (EDM) is seen as one of the most ideal approaches to manage machining Ti-6Al-4V combination, since it is a noncontact electro-thermal machining method, and it is self-ruling from the mechanical properties of the readied material. In EDM, dielectric plays important role in machining operation. In present paper silicon powder suspended plus kerosene is used as dielectric to explore the effect of these dielectrics on the execution criteria such as material removal rate (MRR) and roughness (Ra) in the midst of machining of titanium combination (Ti-6Al-4V). Peak current, pulse on time, pulse off time and powder included into dielectric liquid of EDM were picked as methodology parameters to think about the PMEDM execution with respect to MRR and Ra. The examinations were finished in organizing mode on an exceptionally made exploratory set up developed in laboratory. The ideal qualities for execution parameter were found by performing analysis and suggested ideal conditions have been verified by conducting confirmation experiments.


Author(s):  
Kaushik Kumar ◽  
J. Paulo Davim

Electrical Discharge Machining (EDM) process is a widely used machining process in several fabrication, construction and repair work applications. Considering Pulse-On Time, Pulse OFF time, Peak-Current and Gap voltage as the inputs and among all possible outputs, in the present work Material Removal Rate and Surface Roughness are considered as outputs. In order to reduce the number of experiments Design of Experiments (DOE) was undertaken using Orthogonal Array and later on the outputs were optimized using ANN and PSO. It was found that the results obtained from both the techniques were tallying with each other.


2022 ◽  
pp. 824-842
Author(s):  
Kaushik Kumar ◽  
J. Paulo Davim

Electrical Discharge Machining (EDM) process is a widely used machining process in several fabrication, construction and repair work applications. Considering Pulse-On Time, Pulse OFF time, Peak-Current and Gap voltage as the inputs and among all possible outputs, in the present work Material Removal Rate and Surface Roughness are considered as outputs. In order to reduce the number of experiments Design of Experiments (DOE) was undertaken using Orthogonal Array and later on the outputs were optimized using ANN and PSO. It was found that the results obtained from both the techniques were tallying with each other.


2012 ◽  
Vol 488-489 ◽  
pp. 871-875
Author(s):  
V. Anandakrishnan ◽  
V. Senthilkumar

Copper based metal matrix composite reinforced with Boron Carbide is a newly developed Electrical Discharge Machining (EDM) electrode showing better performance than the conventional copper based electrode. Right selection of machining parameters such as current, pulse on time and pulse off time is one of the most important aspects in EDM. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Removal Rate (TRR) and Surface roughness (Ra) to machining parameters (current, pulse-on time and pulse-off time). Furthermore, a study was carried out to analyze thSubscript texte effects of machining parameters on various performance parameters such as, MRR, TRR and Ra. The results of Analysis of Variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied. Response surface modeling is used to develop surface and contour graphs to analyze the effects of EDM input parameters on outer parameters.


In the present work, the effect of process parameters on material removal rate during the machining of aluminium alloy (5086) with WEDM is studied. The four control parameter were selected i.e pulse on time (TON), pulse off time (TOFF), peak current (IP), and spark gap voltage (SV) to investigate their effects on material removal rate (MRR). Each control parameter had three levels. Total 27 experiments were done with a zinc coated brass wire of diameter 0.25 mm. Taguchi L9 orthogonal array technique was used for the experiment. ANOVA was used to find out the significance of control parameters and their contribution on MRR. It was found that maximum material removal rate was 41.52 mm3 /min which was due to high pulse on time and low pulse off time.


Author(s):  
Pravin Rai ◽  
Neelesh K Jain ◽  
Sunil Pathak

Gear is one of the most vital mechanical elements for transmission of power and motion. It has been considered as one of the highest consumable mechanical parts. Surface attributes of the gears are most important elements to describe its operating performance, service life, and accuracy. Present work highlights the development of pulsed-electrochemical honing process to enhance the performance of gears by refining the variables of surface roughness, microgeometry, and material removal rate of 20MnCr5 alloy steel helical gears. Freshly designed sandwich type cathode gear has been developed which served as a tool in pulsed-electrochemical honing process. Investigations have been done on studying the effects and identifying the optimum values of four most important variables of pulsed-electrochemical honing process, namely applied voltage ( V), pulse-on time ( T on), pulse-off time ( T off), and finishing time ( t) on synchronized enhancement in surface finish and microgeometry. Results of the investigations reveal that T on as 6 ms, T off as 3 ms, t as 8 min, and V as 16 V yielded the best results for surface finish and microgeometry together.


2015 ◽  
Vol 14 (03) ◽  
pp. 189-202 ◽  
Author(s):  
V. Vikram Reddy ◽  
P. Madar Valli ◽  
A. Kumar ◽  
Ch. Sridhar Reddy

In the present work, an investigation has been made into the electrical discharge machining process during machining of precipitation hardening stainless steel PH17-4. Taguchi method is used to formulate the experimental layout, to analyze the effect of each process parameter on machining characteristics and to predict the optimal choice for each electrical discharge machining process parameters namely, peak current, pulse on time and pulse off time that give up optimal process performance characteristics such as material removal rate, surface roughness, tool wear rate and surface hardness. To identify the significance of parameters on measured response, the analysis of variance has been done. It is found that parameters peak current and pulse on time have the significant affect on material removal rate, surface roughness, tool wear rate and surface hardness. However, parameter pulse off time has significant affect on material removal rate. Confirmation tests are conducted at their respective optimum parametric settings to verify the predicted optimal values of performance characteristics.


2021 ◽  
Vol 41 (3) ◽  
Author(s):  
Ashish Goyal ◽  
Vyom Singh ◽  
Abhishek Patel

Gear fabrication in wire electrical discharge machining (WEDM) plays an important role in manufacturing industries. This paper describes the analysis and optimization of process parameters for the fabrication of spur gear on brass spur gear on brass workpiece (10cmx15cmx6mm) material by wire EDM process. The experiments were performed by using the design of experiment (DoE) approach and the material removal rate (MRR) was analyzed by response surface methodology technique. The effect of input parameters i.e. pulse on time, pulse off time and feed rate on MRR has been investigated. The surface geometry of the gears has been analysed by the Scanning Electron Microscopy (SEM). This study found that 0.4 μs for pulse on time, 60 μs for pulse-off time and 6 mm/min for feed rate provides improved material removal rate. The analysis of variance shows that pulse on time and feed rate are the significant parameters for the wire EDM process. The SEM image exhibits the capability of WEDM to machined miniature gear with a uniform distribution of regular-shaped craters and defect-free flank surface.


2020 ◽  
Vol 62 (5) ◽  
pp. 481-491
Author(s):  
Engin Nas

Abstract This study investigated the electrical discharge machining (EDM) performance of Ramor 500 Armor steel, a material used in the defense industry for armor production. In addition, the surface quality and amount of material wear of the treated surfaces were determined using different electrical discharge processing parameters for a copper electrode including pulse on-time (99, 150, 225, 300, 351 μs), pulse off-time (10, 15, 23, 30, 35 μs), and discharge current (3, 4, 6, 8, 9 A), at a constant pressure of 1 mm depth of cut. As a result of the experiments, the values related to the material removal rate (MRR) and the surface roughness (Ra) were obtained and the findings analyzed via response surface methodology (RSM). The increase in amperage and pulse on time resulted in an increase in Ra and MRR values. The minimum and maximum Ra and MRR values emerged at currents of 3 and 9 A, respectively. In the experiments performed applying currents of between 3 and 9 A, the white layer widths were measured as 0.0474 mm and 0.0915 mm, respectively. The statistical test results showed that the most effective processing parameters for the MRR were the discharge current amperage (49.01 %) and the pulse off-time (16.51 %), whereas the most effective parameter for the Ra value was the discharge current amperage (79.07 %).


Sign in / Sign up

Export Citation Format

Share Document