scholarly journals Conflation of satellite altimetry and tide gauge records at coast

2020 ◽  
Vol 10 (1) ◽  
pp. 62-68
Author(s):  
H. Bâki Iz ◽  
C. K. Shum ◽  
T. Y. Yang

AbstractThis study demonstrates that absolute (geocentric) and relative sea level trends, sea level acceleration, low frequency sea level variations and linear trends in vertical crustal movements experienced at a tide gauge station can be estimated simultaneously using conflated satellite altimetry and tide gauge measurements without the aid of GPS measurements. The formulation is the first of its kind in sea level studies and its effectiveness is exemplified using tide gauge, and satellite altimetry measurements carried out in the vicinity of a tide gauge station.

2019 ◽  
Vol 11 (3) ◽  
pp. 277 ◽  
Author(s):  
Suresh Palanisamy Vadivel ◽  
Duk-jin Kim ◽  
Jungkyo Jung ◽  
Yang-Ki Cho ◽  
Ki-Jong Han ◽  
...  

Vertical land motion at tide gauges influences sea level rise acceleration; this must be addressed for interpreting reliable sea level projections. In recent years, tide gauge records for the Eastern coast of Korea have revealed rapid increases in sea level rise compared with the global mean. Pohang Tide Gauge Station has shown a +3.1 cm/year sea level rise since 2013. This study aims to estimate the vertical land motion that influences relative sea level rise observations at Pohang by applying a multi-track Persistent Scatter Interferometric Synthetic Aperture Radar (PS-InSAR) time-series analysis to Sentinel-1 SAR data acquired during 2015–2017. The results, which were obtained at a high spatial resolution (10 m), indicate vertical ground motion of −2.55 cm/year at the Pohang Tide Gauge Station; this was validated by data from a collocated global positioning system (GPS) station. The subtraction of InSAR-derived subsidence rates from sea level rise at the Pohang Tide Gauge Station is 6 mm/year; thus, vertical land motion significantly dominates the sea level acceleration. Natural hazards related to the sea level rise are primarily assessed by relative sea level changes obtained from tide gauges; therefore, tide gauge records should be reviewed for rapid vertical land motion along the vulnerable coastal areas.


Ocean Science ◽  
2015 ◽  
Vol 11 (4) ◽  
pp. 617-628 ◽  
Author(s):  
Q. H. Luu ◽  
P. Tkalich ◽  
T. W. Tay

Abstract. Sea level rise due to climate change is non-uniform globally, necessitating regional estimates. Peninsular Malaysia is located in the middle of Southeast Asia, bounded from the west by the Malacca Strait, from the east by the South China Sea (SCS), and from the south by the Singapore Strait. The sea level along the peninsula may be influenced by various regional phenomena native to the adjacent parts of the Indian and Pacific oceans. To examine the variability and trend of sea level around the peninsula, tide gauge records and satellite altimetry are analyzed taking into account vertical land movements (VLMs). At annual scale, sea level anomalies (SLAs) around Peninsular Malaysia on the order of 5–25 cm are mainly monsoon driven. Sea levels at eastern and western coasts respond differently to the Asian monsoon: two peaks per year in the Malacca Strait due to South Asian–Indian monsoon; an annual cycle in the remaining region mostly due to the East Asian–western Pacific monsoon. At interannual scale, regional sea level variability in the range of ±6 cm is correlated with El Niño–Southern Oscillation (ENSO). SLAs in the Malacca Strait side are further correlated with the Indian Ocean Dipole (IOD) in the range of ±5 cm. Interannual regional sea level falls are associated with El Niño events and positive phases of IOD, whilst rises are correlated with La Niña episodes and negative values of the IOD index. At seasonal to interannual scales, we observe the separation of the sea level patterns in the Singapore Strait, between the Raffles Lighthouse and Tanjong Pagar tide stations, likely caused by a dynamic constriction in the narrowest part. During the observation period 1986–2013, average relative rates of sea level rise derived from tide gauges in Malacca Strait and along the east coast of the peninsula are 3.6±1.6 and 3.7±1.1 mm yr−1, respectively. Correcting for respective VLMs (0.8±2.6 and 0.9±2.2 mm yr−1), their corresponding geocentric sea level rise rates are estimated at 4.4±3.1 and 4.6±2.5 mm yr−1. The geocentric rates are about 25 % faster than those measured at tide gauges around the peninsula; however, the level of uncertainty associated with VLM data is relatively high. For the common period between 1993 and 2009, geocentric sea level rise values along the Malaysian coast are similar from tide gauge records and satellite altimetry (3.1 and 2.7 mm yr−1, respectively), and arguably correspond to the global trend.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
H. Bâki Iz

AbstractThis study proposes a new paradigm for assessing thermosteric effects of warming oceans at a tide gauge station. For demonstration, the trend due to the global thermosteric sea level at the Key West, FL tide gauge station was estimated using the tide gauge measurements and the global sea surface temperature anomalies that were represented by yearly distributed lags. A comparison of the estimate with the trend estimate from a descriptive model revealed that 0.7±0.1 mm/yr, (p<0.01), of the total trend 2.2±0.1 mm/yr (p<0.01) estimated using the descriptive model can be attributed to the global warming of the oceans during the last century at this station. The remaining 1.5±0.1 mm/yr, 70 percent of the total trend, is the lump sum estimate of the secular changes due to the eustatic, halosteric, and various local isostatic contributions.


2018 ◽  
Vol 8 (1) ◽  
pp. 130-135 ◽  
Author(s):  
H. Bâki Iz ◽  
C. K. Shum ◽  
C. Y. Kuo

Abstract This observational study reports that several globally distributed tide gauge stations exhibit a propensity of statistically significant sea level accelerations during the satellite altimetry era. However, the magnitudes of the estimated tide gauge accelerations during this period are systematically and noticeably smaller than the global mean sea level acceleration reported by recent analyses of satellite altimetry. The differences are likely to be caused by the interannual, decadal and interdecadal sea level variations, which are modeled using a broken trend model with overlapping harmonics in the analyses of tide gauge data but omitted in the analysis of satellite altimetry.


2021 ◽  
Vol 52 ◽  
pp. 105-118
Author(s):  
Umberto Tammaro ◽  
Francesco Obrizzo ◽  
Umberto Riccardi ◽  
Adriano La Rocca ◽  
Salvatore Pinto ◽  
...  

Abstract. In this study, we investigate the oscillations of relative sea level through the analysis of tide gauge records about 10-year long collected in the Gulfs of Pozzuoli and Napoli (Southern Italy). The main goal of this study is to provide a suitable resolution model of the sea tides including low frequency (seiches), tidal bands and non-linear tides. The spectral analyses of the tide gauge records lead us to identify a number of seiche periods some of them already known from the literature and some other unknown. Furthermore, we target a non-conventional purpose of the tidal analysis, namely extracting from the tide gauge records the volcano-tectonic signal (vertical ground displacement) in the resurgent Campi Flegrei caldera. We suggest a method to filter out the volcano-tectonic signal (bradyseism) from the tide gauge records by deconvolving it from two records, one collected in the active volcanic area (Pozzuoli) and the other one collected in a tectonically stable station (Napoli), located beyond the caldera rim. Finally, we retrieve the relative mean sea level change in the Gulf of Naples and compare it with the trend found in five tide gauges spread along the Italian coast.


2015 ◽  
Vol 57 (6) ◽  
Author(s):  
Gaia Galassi ◽  
Giorgio Spada

<p>We have analyzed tide gauge data from the Adriatic Sea in order to assess the secular sea-level trend, its acceleration and the existence of possible cyclic variation. Analyzing the sea-level stack of all Adriatic tide gauges, we have obtained a trend of (1.25±0.04) mm yr<sup>-1</sup>, in agreement with that observed for the last century in the Mediterranean Sea, and an acceleration that is negligibile compared to the average global values. By means of the Ensemble Empirical Mode Decomposition technique, we have evidenced an energetic oscillation with a period of <span>∼</span>20 years that we relate with the recurrence of opposite phases in the Atlantic Multi–decadal Oscillation and North Atlantic Oscillation indices. We suggest that anomalously high sea-level values observed at all the Adriatic tide gauges during 2010 and 2011 can be explained by the rising phase of this 20 years cycle.</p>


2021 ◽  
Vol 11 (1) ◽  
pp. 7-13
Author(s):  
H. Bâki İz

Abstract Detection and quantification of sea level accelerations at tide gauge stations are needed for assessing anthropogenic contributions to the climate change. Nonetheless, uniform or non-uniform sea level accelerations/decelerations are particularly di˚cult to discern partly because of their small magnitudes and partly because of the low frequency sea level variations as confounders. Moreover, noisy excursions in the observed sea level variations also exacerbate reliability of estimated sea level accelerations. This study explores the uniformity of a sea level acceleration graphically that is left unmodeled in the residuals of a least squares solution using cumulative sum charts. Key West, USA tide gauge station’s record is studied for a demonstration. The cumulative sum charts of the residuals of a rigorous kinematic model solution without the acceleration parameter revealed its crisp and uniform signature experienced at this station since 1913.


Sign in / Sign up

Export Citation Format

Share Document