Sea level acceleration under the magnifier

2021 ◽  
Vol 11 (1) ◽  
pp. 7-13
Author(s):  
H. Bâki İz

Abstract Detection and quantification of sea level accelerations at tide gauge stations are needed for assessing anthropogenic contributions to the climate change. Nonetheless, uniform or non-uniform sea level accelerations/decelerations are particularly di˚cult to discern partly because of their small magnitudes and partly because of the low frequency sea level variations as confounders. Moreover, noisy excursions in the observed sea level variations also exacerbate reliability of estimated sea level accelerations. This study explores the uniformity of a sea level acceleration graphically that is left unmodeled in the residuals of a least squares solution using cumulative sum charts. Key West, USA tide gauge station’s record is studied for a demonstration. The cumulative sum charts of the residuals of a rigorous kinematic model solution without the acceleration parameter revealed its crisp and uniform signature experienced at this station since 1913.

2020 ◽  
Vol 10 (1) ◽  
pp. 62-68
Author(s):  
H. Bâki Iz ◽  
C. K. Shum ◽  
T. Y. Yang

AbstractThis study demonstrates that absolute (geocentric) and relative sea level trends, sea level acceleration, low frequency sea level variations and linear trends in vertical crustal movements experienced at a tide gauge station can be estimated simultaneously using conflated satellite altimetry and tide gauge measurements without the aid of GPS measurements. The formulation is the first of its kind in sea level studies and its effectiveness is exemplified using tide gauge, and satellite altimetry measurements carried out in the vicinity of a tide gauge station.


2019 ◽  
Vol 11 (3) ◽  
pp. 277 ◽  
Author(s):  
Suresh Palanisamy Vadivel ◽  
Duk-jin Kim ◽  
Jungkyo Jung ◽  
Yang-Ki Cho ◽  
Ki-Jong Han ◽  
...  

Vertical land motion at tide gauges influences sea level rise acceleration; this must be addressed for interpreting reliable sea level projections. In recent years, tide gauge records for the Eastern coast of Korea have revealed rapid increases in sea level rise compared with the global mean. Pohang Tide Gauge Station has shown a +3.1 cm/year sea level rise since 2013. This study aims to estimate the vertical land motion that influences relative sea level rise observations at Pohang by applying a multi-track Persistent Scatter Interferometric Synthetic Aperture Radar (PS-InSAR) time-series analysis to Sentinel-1 SAR data acquired during 2015–2017. The results, which were obtained at a high spatial resolution (10 m), indicate vertical ground motion of −2.55 cm/year at the Pohang Tide Gauge Station; this was validated by data from a collocated global positioning system (GPS) station. The subtraction of InSAR-derived subsidence rates from sea level rise at the Pohang Tide Gauge Station is 6 mm/year; thus, vertical land motion significantly dominates the sea level acceleration. Natural hazards related to the sea level rise are primarily assessed by relative sea level changes obtained from tide gauges; therefore, tide gauge records should be reviewed for rapid vertical land motion along the vulnerable coastal areas.


2006 ◽  
Vol 23 (4) ◽  
pp. 619-629 ◽  
Author(s):  
Rui M. Ponte

Abstract For a dynamical interpretation of sea level records, estimates are needed of the isostatic, or so-called inverted barometer, signals (ηib) associated with the ocean response to atmospheric loading. Seasonal and longer-period ηib signals are evaluated over the global ocean for the period 1958–2000 using monthly sea level pressure fields from two different atmospheric reanalyses. Variability and linear trends in ηib agree well for the two reanalyses in most regions but less so over the Southern Ocean, where uncertainties in ηib seem to be largest. The standard deviation of ηib ranges from <1 cm in equatorial regions to >7 cm in the regions of the Aleutian and Iceland lows and parts of the Southern and Arctic Oceans. When compared to a global tide gauge dataset, both seasonal and interannual ηib signals are found to contribute importantly to the sea level variance in many mid- and high-latitude records, with seasonal signals important as well in tropical records from India and Southeast Asia. For these records, subtracting ηib from the data can lead to changes in variance of 40% or more. Over the period of study, linear trends in ηib are mostly negative at low and midlatitudes and can cause negative biases in tide gauge estimates of global mean sea level rise that are comparable in magnitude to the effects of postglacial rebound. In agreement with previous findings, ηib signals are found to introduce anomalous behavior in local records (e.g., substantially weaker upward trends in the Mediterranean), and their removal can also reduce formal trend uncertainties. Accounting for ηib effects can be even more important when analyzing relatively short (decadal) records, such as those available from satellite altimetry.


2021 ◽  
Vol 824 (1) ◽  
pp. 012066
Author(s):  
Susilo ◽  
R S Dewi ◽  
A A Putra ◽  
B T Widyantoro ◽  
I Meilano ◽  
...  

2021 ◽  
Vol 21 (8) ◽  
pp. 2643-2678 ◽  
Author(s):  
Davide Zanchettin ◽  
Sara Bruni ◽  
Fabio Raicich ◽  
Piero Lionello ◽  
Fanny Adloff ◽  
...  

Abstract. The city of Venice and the surrounding lagoonal ecosystem are highly vulnerable to variations in relative sea level. In the past ∼150 years, this was characterized by an average rate of relative sea-level rise of about 2.5 mm/year resulting from the combined contributions of vertical land movement and sea-level rise. This literature review reassesses and synthesizes the progress achieved in quantification, understanding and prediction of the individual contributions to local relative sea level, with a focus on the most recent studies. Subsidence contributed to about half of the historical relative sea-level rise in Venice. The current best estimate of the average rate of sea-level rise during the observational period from 1872 to 2019 based on tide-gauge data after removal of subsidence effects is 1.23 ± 0.13 mm/year. A higher – but more uncertain – rate of sea-level rise is observed for more recent years. Between 1993 and 2019, an average change of about +2.76 ± 1.75 mm/year is estimated from tide-gauge data after removal of subsidence. Unfortunately, satellite altimetry does not provide reliable sea-level data within the Venice Lagoon. Local sea-level changes in Venice closely depend on sea-level variations in the Adriatic Sea, which in turn are linked to sea-level variations in the Mediterranean Sea. Water mass exchange through the Strait of Gibraltar and its drivers currently constitute a source of substantial uncertainty for estimating future deviations of the Mediterranean mean sea-level trend from the global-mean value. Regional atmospheric and oceanic processes will likely contribute significant interannual and interdecadal future variability in Venetian sea level with a magnitude comparable to that observed in the past. On the basis of regional projections of sea-level rise and an understanding of the local and regional processes affecting relative sea-level trends in Venice, the likely range of atmospherically corrected relative sea-level rise in Venice by 2100 ranges between 32 and 62 cm for the RCP2.6 scenario and between 58 and 110 cm for the RCP8.5 scenario, respectively. A plausible but unlikely high-end scenario linked to strong ice-sheet melting yields about 180 cm of relative sea-level rise in Venice by 2100. Projections of human-induced vertical land motions are currently not available, but historical evidence demonstrates that they have the potential to produce a significant contribution to the relative sea-level rise in Venice, exacerbating the hazard posed by climatically induced sea-level changes.


2020 ◽  
Vol 8 (4) ◽  
pp. 285
Author(s):  
Naghmeh Afshar-Kaveh ◽  
Mostafa Nazarali ◽  
Charitha Pattiaratchi

Sea-level data from six tide gauge stations along the northern coast of the Persian Gulf were analyzed both in time and frequency domain to evaluate meteorological forcing. Spectral analyses indicated that mixed, predominantly semi-diurnal tides were dominant at all stations, but low-frequency fluctuations correlated well with atmospheric pressure and wind components. Non-tidal sea-level fluctuations up to 0.75 m were observed along the northern coasts of the Gulf due to the combined action of lower atmospheric pressure and cross-shore wind. Coherency between low-frequency sea-level records and mean sea-level pressure indicated that the latter usually leads to sea-level fluctuations between 1 and 6.4 days. In contrast, the same analysis on the wind velocity and sea level revealed that the former lags between 3 and 13 days. The effect of wind stress on coastal sea-level variations was higher compared with the effect of atmospheric pressure. Concurrent analysis of low-pass-filtered sea-level records proved that the non-tidal wave moves from west to east along the northern coasts of the Persian Gulf.


2020 ◽  
Author(s):  
Wen-Hau Lan ◽  
Chung-Yen Kuo ◽  
Sheng-Fong Lin ◽  
Chien-Hsing Lu

<p>Taiwan is an island entirely surrounded by oceans, so living and economics are significantly influenced by the oceans. The electronic navigational chart system is extremely important for improving the safety of marine navigation and ocean depth is the essential data for electronic charts. Sea surface variations affected by ocean tide and sea level change are the main error sources in hydrographic surveys since the traditional tidal correction only using tide gauge stations, ignoring geographically non-uniform ocean tides and sea level anomalies around Taiwan. In this research, we evaluate two factors impacting the accuracy of hydrographic surveys, including ocean tides and seasonal sea level variations, using tide gauge records, satellite altimeter data and ocean tide models around Taiwan, and also analyze the accuracy of the ocean tide models around Taiwan. In addition, sea level anomalies are strongly influenced by climate changes in recent years. An understanding of seasonal sea level cycle and its spatial and temporal changes are importance because its temporal changes can result in the variation of the frequency and magnitude of coastal hazards. Therefore, we will apply the Ensemble Empirical Mode Decomposition to sea level data to assess the stability of the long-term seasonal sea level fluctuations with time.</p>


Sign in / Sign up

Export Citation Format

Share Document