scholarly journals The laboratory test rig with miniature jet engine to research aviation fuels combustion process

2015 ◽  
Vol 36 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Bartosz Gawron ◽  
Tomasz Białecki

Abstract This article presents laboratory test rig with a miniature turbojet engine (MiniJETRig – Miniature Jet Engine Test Rig), that was built in the Air Force Institute of Technology. The test rig has been developed for research and development works aimed at modelling and investigating processes and phenomena occurring in full scale jet engines. In the article construction of a test rig is described, with a brief discussion on the functionality of each of its main components. Additionally examples of measurement results obtained during the realization of the initial tests have been included, presenting the capabilities of the test rig.

2016 ◽  
Vol 167 (4) ◽  
pp. 58-63 ◽  
Author(s):  
Bartosz GAWRON ◽  
Tomasz BIAŁECKI

This paper presents a methodology developed to measure exhaust gas emissions during operation of a miniature turbojet engine, using a laboratory test rig. The rig has been built for research and development works aimed at modelling and investigating processes and phenomena occurring in jet engines. The miniature jet engines, similarly to full–scale ones used commonly in air transport, are characterized by variable exhaust gas emissions, depending on engine operating parameters. For this reason, an attempt has been made to determine the characteristic features of miniature engine operation modes and to define the variability of operation parameters and exhaust gas emissions as a function of time. According to the authors, the preliminary tests allowed for defining specific profile of engine test, which enables proper measurement regarding exhaust gas emissions using the miniature jet engine. The paper also presents test results for Jet A-1 fuel, according to the used methodology.


Author(s):  
Andrew E. Cottle ◽  
Marc D. Polanka ◽  
Larry P. Goss ◽  
Corey Z. Goss

A gas turbine combustion process subjected to high levels of centrifugal acceleration has demonstrated the potential for increased flame speeds and shorter residence times. Ultracompact combustors (UCC) invoke the high-g phenomenon by introducing air and fuel into a circumferential cavity which is recessed radially outboard with respect to the primary axial core flow. Upstream air is directed tangentially into the combustion cavity to induce bulk circumferential swirl. Swirl velocities in the cavity produce a centrifugal load on the flow that is typically expressed in terms of gravitational acceleration or g-loading. The Air Force Institute of Technology (AFIT) has developed an experimental facility in which g-loads up to 2000 times the earth’s gravitational field (“2000 g’s”) have been demonstrated. In this study, the flow within the combustion cavity is examined to determine factors and conditions which invoke responses in cavity g-loads. The AFIT experiment was modified to enable optical access into the primary combustion cavity. The techniques of particle image velocimetry (PIV) and particle streak emission velocimetry (PSEV) provided high-fidelity measurements of the velocity fields within the cavity. The experimental data were compared to a set of computational fluid dynamics (CFD) solutions. Improved cavity air and fuel injection schemes were evaluated over a range of air flows and equivalence ratios. Increased combustion stability was attained by providing a uniform distribution of cavity air drivers. Lean cavity equivalence ratios at a high total airflow resulted in higher g-loads and more complete combustion, thereby showing promise for utilization of the UCC as a main combustor.


2014 ◽  
Vol 29 (1) ◽  
pp. 15-22
Author(s):  
Jarosław Sarnecki

Abstract The article deals with laboratory test method for jet fuels thermal stability testing. Author described the reasons that led to test rig preparation, its construction and operation principles. Innovative test rig for jet fuels thermal stability testing enables research in wide thermal conditions and different pressures. Testing capabilities and advantages compared with currently used standard test method of jet fuels thermal stability testing according to ASTM D3241 have been also presented


1966 ◽  
Vol 17 (2) ◽  
pp. 141-160 ◽  
Author(s):  
T. H. Frost

SummaryMixing systems have many applications in gas turbines and aircraft jet propulsion, e.g. mixing zones in combustion chambers, ejectors for jet lift thrust augmentors and supersonic propulsion systems. A further application similar to that of combustion chamber mixing is that of mixing the cold and hot exhausts of a bypass jet engine. These are both characterised by mixing at constant static pressure and approximately constant total pressure as opposed to the more general case of unequal pressures in ejector systems (Fig. 1).The exhaust mixing process as used in Rolls-Royce bypass jet engines, e.g. Spey and Conway, enables the potential of the bypass principle, in terms of minimum weight and fuel consumption, to be exploited by a simple practical device.This is achieved by mixing the two streams in a common duct of fairly short dimensions with a corrugated metal interface on the inlet side. The consideration of these practical systems forms the main topic of this paper.


2002 ◽  
Vol 124 (3) ◽  
pp. 566-570 ◽  
Author(s):  
R. L. Fittro ◽  
C. R. Knospe

Many important industrial problems in the control of rotating machinery with active magnetic bearings concern the minimization of the rotor vibration response to poorly characterized disturbances at a single or several shaft locations, these typically not corresponding to those of a sensor or actuator. Herein, we examine experimental results of a multivariable controller obtained via μ synthesis with a laboratory test rig. These indicate that a significant improvement in performance can be obtained with a multivariable μ controller over that achieved with an optimal decentralized PD controller.


2021 ◽  
pp. 1950016
Author(s):  
Katsumi Saitoh ◽  
Akihiro Fushimi ◽  
Nobuyuki Takegawa ◽  
Koichiro Sera

To characterize the chemical composition of aircraft exhaust particles, we developed a treatment method of jet fuel for an elemental analysis by an in-vacuum PIXE system. Eleven elements (Si, S, Cl, K, Ca, Cr, Fe, Ni, Cu, Zn, and Pb) were identified from each sample. The concentrations of S from five JET A-1 fuel samples collected on different days ranged from 30.4 to 440 wt.-ppm. The concentration level of S agreed well with the measurement results obtained by an in-air PIXE analysis, which we have previously performed to determine the major content elements and their concentration levels. Nine elements out of the identified 11 elements (Si, Cl, K, Ca, Cr, Ni, Cu, Zn, and Pb), which were not detected by the in-air PIXE analysis, were detected in all the JET A-1 fuel samples measured. Among these elements, Si, Ni, Cu, Zn, and Pb were found to be the major components. It is suggested that particles emitted from aircraft jet engines, which are generally in the size range smaller than 100 nm (ultrafine particles: UFPs), may contain Si, Ni, Cu, Zn, and Pb. These findings provide useful insights into the source apportionment of UFPs in and around airports.


Sign in / Sign up

Export Citation Format

Share Document