scholarly journals Environmental Performance of Kettle Production: Product Life Cycle Assessment

2017 ◽  
Vol 25 (4) ◽  
pp. 255-261
Author(s):  
Andrzej Marcinkowski ◽  
Krzysztof Zych

AbstractThe main objective of this paper is to compare the environmental impact caused by two different types of water boiling processes. The aim was achieved thanks to product life cycle assessment (LCA) conducted for stovetop and electric kettles. A literature review was carried out. A research model was worked out on the basis of data available in literature as well as additional experiments. In order to have a better opportunity to compare LCA results with reviewed literature, eco-indicator 99 assessment method was chosen. The functional unit included production, usage and waste disposal of each product (according to from cradle to grave approach) where the main function is boiling 3360 l of water during 4-year period of time. A very detailed life cycle inventory was carried out. The mass of components was determined with accuracy of three decimal places (0.001 g). The majority of environmental impact is caused by electricity or natural gas consumption during usage stage: 92% in case of the electric and kettle and 99% in case of stovetop one. Assembly stage contributed in 7% and 0.8% respectively. Uncertainty and sensitivity analyses took into consideration various waste scenario patterns as well as demand for transport. Environmental impact turned out to be strongly sensitive to a chosen pattern of energy delivery (electricity mix) which determined final comparison results. Basing on LCA results, some improvements of products were suggested. The boiling time optimization was pointed out for electric kettle's efficiency improvement. Obtained results can be used by manufacturers in order to improve their eco-effectiveness. Moreover, conclusions following the research part can influence the future choices of home appliances users.

2010 ◽  
Vol 132 (9) ◽  
Author(s):  
Srinivas Kota ◽  
Amaresh Chakrabarti

Life cycle assessment (LCA) is used to estimate a product’s environmental impact. Using LCA during the earlier stages of design may produce erroneous results since information available on the product’s lifecycle is typically incomplete at these stages. The resulting uncertainty must be accounted for in the decision-making process. This paper proposes a method for estimating the environmental impact of a product’s life cycle and the associated degree of uncertainty of that impact using information generated during the design process. Total impact is estimated based on aggregation of individual product life cycle processes impacts. Uncertainty estimation is based on assessing the mismatch between the information required and the information available about the product life cycle in each uncertainty category, as well as their integration. The method is evaluated using pre-defined scenarios with varying uncertainty.


Author(s):  
Yevheniia Matis ◽  
Olga Krot

Based on the methods of product life cycle assessment, it is proposed to assess the environmental friendliness of the chemical plant. The LCA method represents the very systematic approach to assessing the environmental impact of production, carried out as a whole over its life cycle from the extraction and processing of raw materials to the use of individual components. It is used to systematically assess the impact of each stage of the production life cycle on the environment. Life cycle inventory analysis includes the collection of data required for the study, as well as the inventory of input (energy, water, raw materials and materials) and output (emissions into the environment, emissions, solid waste disposal, eastern water flows). a system that is a set of single processes interconnected by the flows of semi-finished products used in one or more given functions, with other productive systems and elementary flows with the environment (emissions into the atmosphere, discharges into water). Life cycle assessment (LCA) is a method that should be used to quantify the products and services of the environment carried out during its life cycle (ISO 14040 (2006)). There are several procedures approved by this methodology to support the calculation of the impact on emergencies. The methodology includes commercial software tools that are used directly or indirectly [1]. One of the goals of the LCA is to analyze the development of the production process at the station of emergency facilities. According to ISO 14040 (2006), the product life cycle assessment structure includes: 1) determining the level and scope to limit the study and select a functional unit; 2) analysis of input and output reserves of energy and materials that are important for the study of the research system; 3) life cycle impact assessment (LCIA) to classify environmental impacts; 4) phase interpretation, to test the overall popularity of the conclusion. The LCA can manage information to analyze and support the project and production decision-making process.


Author(s):  
Enoch Zhao ◽  
Paul D Walker ◽  
Nic C Surawski

This paper applies a case study approach for Australia and calculates the equipment life cycle assessment of diesel, hybrid and electric buses. This study prepared the assessment according to the procedures and methodologies outlined in the ISO 14040:2006 Environmental Management – Life Cycle Assessment. The authors have chosen three bus models currently in service in the Australian bus fleet to serve as a baseline model for comparison. The amount of greenhouse gas emissions were calculated from the production, assembly, transportation, maintenance and disposal phases. The results in this study show that the electric bus has a higher total environmental impact than the diesel and hybrid bus, mainly due to the manufacturing of the lithium-ion battery. The results also show that the electric bus has a higher environmental impact than the diesel and hybrid bus (18.2% and 14.7% higher, respectively), albeit specific to the product life cycle and without including operation emissions. However, there are many opportunities to reduce product life cycle emissions, such as improvement in manufacturing efficiency, developing new battery technology and production in regions with low carbon-intense grid-mixes.


2021 ◽  
Vol 13 (13) ◽  
pp. 7386
Author(s):  
Thomas Schaubroeck ◽  
Simon Schaubroeck ◽  
Reinout Heijungs ◽  
Alessandra Zamagni ◽  
Miguel Brandão ◽  
...  

To assess the potential environmental impact of human/industrial systems, life cycle assessment (LCA) is a very common method. There are two prominent types of LCA, namely attributional (ALCA) and consequential (CLCA). A lot of literature covers these approaches, but a general consensus on what they represent and an overview of all their differences seems lacking, nor has every prominent feature been fully explored. The two main objectives of this article are: (1) to argue for and select definitions for each concept and (2) specify all conceptual characteristics (including translation into modelling restrictions), re-evaluating and going beyond findings in the state of the art. For the first objective, mainly because the validity of interpretation of a term is also a matter of consensus, we argue the selection of definitions present in the 2011 UNEP-SETAC report. ALCA attributes a share of the potential environmental impact of the world to a product life cycle, while CLCA assesses the environmental consequences of a decision (e.g., increase of product demand). Regarding the second objective, the product system in ALCA constitutes all processes that are linked by physical, energy flows or services. Because of the requirement of additivity for ALCA, a double-counting check needs to be executed, modelling is restricted (e.g., guaranteed through linearity) and partitioning of multifunctional processes is systematically needed (for evaluation per single product). The latter matters also hold in a similar manner for the impact assessment, which is commonly overlooked. CLCA, is completely consequential and there is no limitation regarding what a modelling framework should entail, with the coverage of co-products through substitution being just one approach and not the only one (e.g., additional consumption is possible). Both ALCA and CLCA can be considered over any time span (past, present & future) and either using a reference environment or different scenarios. Furthermore, both ALCA and CLCA could be specific for average or marginal (small) products or decisions, and further datasets. These findings also hold for life cycle sustainability assessment.


2020 ◽  
Vol 12 (11) ◽  
pp. 4604
Author(s):  
Jan Matuštík ◽  
Vladimír Kočí

Electronic shopping is getting more and more popular, and it is not only clothes and electronics that people buy online, but groceries and household products too. Based on real-life data from a major cosmetics and household products retailer in the Czech Republic, this study set to assess the life cycle environmental impact of parcel delivery. Two archetype parcels containing common household and hygiene products were designed and packed in two distinct ways, and the environmental impact was quantified using the Life Cycle Assessment method. It showed that it is environmentally beneficial to use plastic cushions to insulate the goods instead of paper. However, the most important process contributing to the environmental burden was found to be electricity consumption in the logistics center. Hence, the importance of energy efficiency and efficient space utilization was demonstrated on alternative scenarios. Since the cardboard box the goods are packed in turned out to be another important contributor, an alternative scenario was designed where a reusable plastic crate was used instead. Even though the scenario was based on several simplistic assumptions, it showed a clear potential to be environmentally beneficial. In the study, contribution of other processes was scrutinized, as well as sensitivity to variation of parameters, e.g. transportation distances. The main scientific contribution of this work is to show the importance of logistics and distribution of products to end customers in the rapidly developing field of electronic retail of household products.


Author(s):  
Shuyi Wang ◽  
Daizhong Su ◽  
You Wu ◽  
Zijian Chai

Abstract An approach for integrating life-cycle assessment (LCA) into the eco-design of lighting products was developed, and LCAs of five lighting products that are currently on the market were then carried out using this approach. Based on the results of these LCAs, the sustainability requests for lighting products were derived and embedded into the product design specification (PDS), thus ensuring that any product developed according to the PDS would have the desired eco-design features. A new sustainable lighting product was then designed according to the PDS and manufactured, after which the new product underwent LCA. Upon comparing the results of the LCA of the new product with the LCA results for the existing lighting products, the newly designed product was found to provide better environmental performance than the existing products (a 27–58% reduction in environmental impact).


2005 ◽  
Vol 895 ◽  
Author(s):  
Antonia Moropoulou ◽  
Christopher Koroneos ◽  
Maria Karoglou ◽  
Eleni Aggelakopoulou ◽  
Asterios Bakolas ◽  
...  

AbstractOver the years considerable research has been conducted on masonry mortars regarding their compatibility with under restoration structures. The environmental dimension of these materials may sometimes be a prohibitive factor in the selection of these materials. Life Cycle Assessment (LCA) is a tool that can be used to assess the environmental impact of the materials. LCA can be a very useful tool in the decision making for the selection of appropriate restoration structural material. In this work, a comparison between traditional type of mortars and modern ones (cement-based) is attempted. Two mortars of traditional type are investigated: with aerial lime binder, with aerial lime and artificial pozzolanic additive and one with cement binder. The LCA results indicate that the traditional types of mortars are more sustainable compared to cementbased mortars. For the impact assessment, the method used is Eco-indicator 95


Sign in / Sign up

Export Citation Format

Share Document