scholarly journals Nonlinear optical microscopies (NOMs) and plasmon-enhanced NOMs for biology and 2D materials

Nanophotonics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1341-1358
Author(s):  
Jialin Ma ◽  
Mengtao Sun

AbstractIn this review, we focus on the summary of nonlinear optical microscopies (NOMs), which are stimulated Raman scattering (SRS), coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), and two-photon excited fluorescence (TPEF). The introduction is divided into two parts: the principle of SRS, CARS, TPEF, and SHG and their application to biology and two-dimensional materials. We also introduce the connections and differences between them. We also discuss the principle of plasmon-enhanced NOM and its application in the above two aspects. This paper not only summarizes the research progress in the frontier but also deepens the readers’ understanding of the physical principles of these NOMs.

Nanophotonics ◽  
2018 ◽  
Vol 7 (5) ◽  
pp. 873-881 ◽  
Author(s):  
Rui Li ◽  
Yajun Zhang ◽  
Xuefeng Xu ◽  
Yi Zhou ◽  
Maodu Chen ◽  
...  

AbstractIn this paper, we employ the nonlinear optical microscopies of coherent anti-Stokes Raman scattering spectroscopy, two-photon excitation fluorescence, and second harmonic generation to characterize the properties of two-dimensional (2D) materials. With these nonlinear optical microscopy methods, we can not only clearly observe the surface topography of 2D materials but also reveal the quality of 2D materials. These nonlinear optical microscopies offer great potential for characterization of the properties of 2D materials.


Nanophotonics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 487-493 ◽  
Author(s):  
Xiaohu Mi ◽  
Yuyang Wang ◽  
Rui Li ◽  
Mengtao Sun ◽  
Zhenglong Zhang ◽  
...  

AbstractThe nonlinear optical microscopies of coherent two-photon excited fluorescence and anti-Stokes Raman scattering are strongly enhanced by multiple surface plasmon resonances (MSPRs). The Au@Ag nanorods presented strong MSPRs peaks at 800 and 400 nm, and can enhance nonlinear optical microscopy at fundamental and double frequencies, respectively. A two-dimensional (2D) material of g-C3N4 is employed to study the plasmon-enhanced nonlinear optical microscopy by the femtosecond laser. The electric analysis reveals that the MSPRs of the Au@Ag nanorod can significantly enhance the signals of two-photon excited fluorescence and anti-Stokes Raman scattering by up to the orders of 104 and 1016, respectively. The results demonstrate the great advantages of plasmon-enhanced nonlinear optical microscopy for the optical analysis on 2D materials, thus providing a new adventure for increasing the optical resolutions of nonlinear optical microscopy.


2019 ◽  
Vol 18 (5) ◽  
pp. 997-1008 ◽  
Author(s):  
Marco Andreana ◽  
Ryan Sentosa ◽  
Mikael T. Erkkilä ◽  
Wolfgang Drexler ◽  
Angelika Unterhuber

The presented multi-modal platform combines optical coherence tomography, two-photon excited fluorescence, second harmonic generation and anti-Stokes Raman scattering to provide molecular and structural information of tissue in a fast and non-invasive manner.


2021 ◽  
Vol 93 (12) ◽  
pp. 5234-5240
Author(s):  
Tomoko Takahashi ◽  
Krzysztof Pawel Herdzik ◽  
Konstantinos Nikolaos Bourdakos ◽  
James Arthur Read ◽  
Sumeet Mahajan

2001 ◽  
Vol 10 (01) ◽  
pp. 65-77 ◽  
Author(s):  
OU FA ◽  
HE MINGGAO ◽  
WU FUGEN

A new model to describe the origin of optical nonlinearity is presented. In this model, the interaction between light and medium is reduced to the coupling of photons with phonons, which occurs in the crystal lattice vibrating anharmonically. Then the optical nonlinearity originates from the nonlinear photon–phonon coupling or the interaction among phonons themselves. In this paper, more attention is drawn to the latter. By the given model, (1) degenerate and (2) nondegenerate parametric oscillations, (3) Stokes and (4) anti-Stokes Raman scattering, (5) sum-frequency and (6) second harmonic generation and (7) two-photon absorption are dealt with systematically and quantum-mechanically. The results of theoretical analysis show that the effects (1)–(4) are associated with threshold phenomenon, whereas the effects (5)–(7) with the saturation phenomenon.


Sign in / Sign up

Export Citation Format

Share Document