scholarly journals Beyond the classic extinction network: a wider, comparative view

Neuroforum ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Onur Güntürkün ◽  
Maik C. Stüttgen ◽  
Sarah Starosta ◽  
Roland Pusch ◽  
Meng Gao ◽  
...  

AbstractExtinction learning modifies the dynamics of brain circuits such that a previously learned conditioned response is no longer generated. The majority of extinction studies use fear conditioning in rodents and identified the prefrontal cortex, the hippocampus, and the amygdala as core regions of the extinction circuit. We sought to find answers to two questions: First, do we find a similar functional brain circuit in birds, which underwent a 300-million-year separate evolution from mammals? Second, do we have to incorporate the cerebellum as a key component of the central extinction circuit? We indeed show that the avian extinction pathways are not identical but highly similar to those of mammals. In addition, we reveal that the human cerebellum processes prediction errors, a key element driving extinction of learned fear responses, and contributes to context-related effects of extinction.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mayumi Watanabe ◽  
Akira Uematsu ◽  
Joshua P. Johansen

AbstractThe ability to extinguish aversive memories when they are no longer associated with danger is critical for balancing survival with competing adaptive demands. Previous studies demonstrated that the infralimbic cortex (IL) is essential for extinction of learned fear, while neural activity in the prelimbic cortex (PL) facilitates fear responding and is negatively correlated with the strength of extinction memories. Though these adjacent regions in the prefrontal cortex maintain mutual synaptic connectivity, it has been unclear whether PL and IL interact functionally with each other during fear extinction learning. Here we addressed this question by recording local field potentials (LFPs) simultaneously from PL and IL of awake behaving rats during extinction of auditory fear memories. We found that LFP power in the fast gamma frequency (100–200 Hz) in both PL and IL regions increased during extinction learning. In addition, coherency analysis showed that synchronization between PL and IL in the fast gamma frequency was enhanced over the course of extinction. These findings support the hypothesis that interregional interactions between PL and IL increase as animals extinguish aversive memories.


2015 ◽  
Vol 112 (28) ◽  
pp. E3729-E3737 ◽  
Author(s):  
Paul J. Fitzgerald ◽  
Thomas F. Giustino ◽  
Jocelyn R. Seemann ◽  
Stephen Maren

Stress-induced impairments in extinction learning are believed to sustain posttraumatic stress disorder (PTSD). Noradrenergic signaling may contribute to extinction impairments by modulating medial prefrontal cortex (mPFC) circuits involved in fear regulation. Here we demonstrate that aversive fear conditioning rapidly and persistently alters spontaneous single-unit activity in the prelimbic and infralimbic subdivisions of the mPFC in behaving rats. These conditioning-induced changes in mPFC firing were mitigated by systemic administration of propranolol (10 mg/kg, i.p.), a β-noradrenergic receptor antagonist. Moreover, propranolol administration dampened the stress-induced impairment in extinction observed when extinction training is delivered shortly after fear conditioning. These findings suggest that β-adrenoceptors mediate stress-induced changes in mPFC spike firing that contribute to extinction impairments. Propranolol may be a helpful adjunct to behavioral therapy for PTSD, particularly in patients who have recently experienced trauma.


Author(s):  
Leandro F. Vendruscolo ◽  
George F. Koob

Alcohol use disorder is a chronically relapsing disorder that involves (1) compulsivity to seek and take alcohol, (2) difficulty in limiting alcohol intake, and (3) emergence of a negative emotional state (e.g., dysphoria, anxiety, irritability) in the absence of alcohol. Alcohol addiction encompasses a three-stage cycle that becomes more intense as alcohol use progresses: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. These stages engage neuroadaptations in brain circuits that involve the basal ganglia (reward hypofunction), extended amygdala (stress sensitization), and prefrontal cortex (executive function disorder). This chapter discusses key neuroadaptations in the hypothalamic and extrahypothalamic stress systems and the critical role of glucocorticoid receptors. These neuroadaptations contribute to negative emotional states that powerfully drive compulsive alcohol drinking and seeking. These changes in association with a disruption of prefrontal cortex function that lead to cognitive deficits and poor decision making contribute to the chronic relapsing nature of alcohol dependence.


2018 ◽  
Author(s):  
Karthik R. Ramanathan ◽  
Reed L. Ressler ◽  
Jingji Jin ◽  
Stephen Maren

AbstractThe nucleus reuniens (RE) is a ventral midline thalamic nucleus that interconnects the medial prefrontal cortex (mPFC) and hippocampus (HPC). Considerable data indicate that HPC-mPFC circuits are involved in contextual and spatial memory; however, it is not clear whether the RE mediates the acquisition or retrieval of these memories. To examine this question, we inactivated the RE with muscimol before either the acquisition or retrieval of Pavlovian fear conditioning in rats; freezing served as the index of fear. We found that RE inactivation before conditioning impaired the acquisition of contextual freezing, whereas inactivation of the RE prior to retrieval testing increased the generalization of freezing to a novel context; inactivation of the RE did not affect either the acquisition or expression of auditory fear conditioning. Interestingly, contextual conditioning impairments were absent when retrieval testing was also conducted after RE inactivation. Contextual memories acquired under RE inactivation were hippocampal-independent, insofar as contextual freezing in rats conditioned under RE inactivation was insensitive to intra-hippocampal infusions of the NMDA receptor antagonist, D,L-amino-5-phosophonovaleric acid (APV). Together, these data reveal that the RE supports hippocampal-dependent encoding of precise contextual memories that allow discrimination of dangerous from safe contexts. When the RE is inactive, however, alternate neural systems acquire an impoverished contextual memory that is only expressed when the RE is offline.SIGNIFICANCE STATEMENTThe midline thalamic nucleus reuniens (RE) coordinates communication between the hippocampus and medial prefrontal cortex, brain areas critical for contextual and spatial memory. Here we show that temporary pharmacological inactivation of RE impairs the acquisition and precision of contextual fear memories after Pavlovian fear conditioning in rats. However, inactivating the RE prior to retrieval testing restored contextual memory in rats conditioned after RE inactivation. Critically, we show that imprecise contextual memories acquired under RE inactivation are learned independently of the hippocampus. These data reveal that the RE is required for hippocampal-dependent encoding of precise contextual memories to support the discrimination of safe and dangerous contexts.


2021 ◽  
Author(s):  
Maren Klingelhöfer-Jens ◽  
Jayne Morriss ◽  
Tina B Lonsdorf

Individuals who score high in self-reported Intolerance of Uncertainty (IU) tend to find uncertainty unacceptable and aversive. In recent years, research has shed light on the role of IU in modulating subjective (i.e. expectancy ratings) and psychophysiological responses (i.e. skin conductance) across different classical fear conditioning procedures, particularly that of immediate extinction. However, there remain gaps in understanding how IU, in comparison to other negative emotionality traits (STAI-T), impact different types of subjective and psychophysiological measures during different classical fear conditioning procedures. Here, we analyzed IU, STAI-T, subjective (i.e. fear ratings) and psychophysiological (i.e. skin conductance, auditory startle blink) data recorded during fear acquisition training and 24h-delayed extinction training (n = 66). Higher IU, over STAI-T, was: (1) significantly associated with greater fear ratings to the learned fear cue during fear acquisition training, and (2) at trend associated with greater fear ratings to the learned fear versus safe cue during delayed extinction training. Both IU and STAI-T were not related to skin conductance or auditory startle blink during fear acquisition training and delayed extinction training. These results add to and extend our current understanding of the role of IU on subjective and physiological measures during different fear conditioning procedures, particularly that of delayed extinction training. Implications of these findings and future directions are discussed.


2013 ◽  
Vol 110 (4) ◽  
pp. 844-861 ◽  
Author(s):  
Sandeep Pendyam ◽  
Christian Bravo-Rivera ◽  
Anthony Burgos-Robles ◽  
Francisco Sotres-Bayon ◽  
Gregory J. Quirk ◽  
...  

The acquisition and expression of conditioned fear depends on prefrontal-amygdala circuits. Auditory fear conditioning increases the tone responses of lateral amygdala neurons, but the increase is transient, lasting only a few hundred milliseconds after tone onset. It was recently reported that that the prelimbic (PL) prefrontal cortex transforms transient lateral amygdala input into a sustained PL output, which could drive fear responses via projections to the lateral division of basal amygdala (BL). To explore the possible mechanisms involved in this transformation, we developed a large-scale biophysical model of the BL-PL network, consisting of 850 conductance-based Hodgkin-Huxley-type cells, calcium-based learning, and neuromodulator effects. The model predicts that sustained firing in PL can be derived from BL-induced release of dopamine and norepinephrine that is maintained by PL-BL interconnections. These predictions were confirmed with physiological recordings from PL neurons during fear conditioning with the selective β-blocker propranolol and by inactivation of BL with muscimol. Our model suggests that PL has a higher bandwidth than BL, due to PL's decreased internal inhibition and lower spiking thresholds. It also suggests that variations in specific microcircuits in the PL-BL interconnection can have a significant impact on the expression of fear, possibly explaining individual variability in fear responses. The human homolog of PL could thus be an effective target for anxiety disorders.


Sign in / Sign up

Export Citation Format

Share Document