scholarly journals MHD stagnation point slip flow due to a non-linearly moving surface with effect of non-uniform heat source

2019 ◽  
Vol 8 (1) ◽  
pp. 270-282 ◽  
Author(s):  
Mahantesh M. Nandeppanavar ◽  
M. C. Kemparaju ◽  
S. Shakunthala

Abstract In this paper, we have studied the heat transfer characteristics of stagnation point flow of an MHD flow over a non-linearly moving plate with momentum and thermal slip effects in presence of non-uniform heat source/sink. The governing differential equations are transformed into the ordinary differential equations using suitable similarity transformations. These equations which are BVPs’ and are solved using a numerically by fourth order Runge-Kutta method using MAPLE computing software. The effects of governing parameters are studied on flow, velocity and heat distributions and are discussed in detail. It is observed that the non-uniform heat source parameters enhance the temperature distribution. Our results are agreed well with previously published results for some limiting conditions, which validate our present results are correct.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
I. Swain ◽  
S. R. Mishra ◽  
H. B. Pattanayak

An attempt has been made to study the heat and mass transfer effect in a boundary layer MHD flow of an electrically conducting viscous fluid subject to transverse magnetic field on an exponentially stretching sheet through porous medium. The effect of thermal radiation and heat source/sink has also been discussed in this paper. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations and then solved numerically using a fourth-order Runge-Kutta method with a shooting technique. Graphical results are displayed for nondimensional velocity, temperature, and concentration profiles while numerical values of the skin friction local Nusselt number and Sherwood number are presented in tabular form for various values of parameters controlling the flow system.


2017 ◽  
Vol 11 ◽  
pp. 182-190
Author(s):  
Gauri Shenkar Seth ◽  
Rohit Sharma ◽  
B. Kumbhakar ◽  
R. Tripathi

An investigation is carried out for the steady, two dimensional stagnation point flow of a viscous, incompressible, electrically conducting, optically thick heat radiating fluid taking viscous dissipation into account over an exponentially stretching non-isothermal sheet with exponentially moving free-stream in the presence of uniform transverse magnetic field and non-uniform heat source/sink. The governing boundary layer equations are transformed into highly nonlinear ordinary differential equations using suitable similarity transform. Resulting boundary value problem is solved numerically with the help of 4th-order Runge-Kutta Gill method along with shooting technique. Effects of various pertinent flow parameters on the velocity, temperature field, skin friction and Nusselt number are described through figures and tables. Also, the present numerical results are compared with the earlier published results for some reduced case and a good agreement has been found among those results.


2021 ◽  
Vol 10 (3) ◽  
pp. 380-387
Author(s):  
R. Jayakar ◽  
B. Rushi Kumar

Aim: The research carried out in this article is based on experimenting with a 3-D MHD nanofluid flow on a sheet as slendering stretch bearing the slip effects, thermophoresis, Brownian Motion, heat source, and sink. Water-based Cuo and Cu nano-fluids were considered for the analysis. Following the suitable techniques of similarity transformation, the partial differential equations also called the governing equations are deduced into ODE (Ordinary Differential Equations). The mathematical results were estimated by applying the Methods of Newton and Runge-Kutta. The calculations along with the graphs for different parameters were also explained. Novelty: The outcomes of novel effective graphs for different parameters of interest are shown and explained. It has been found that heat-sink/source parameters depending on the temperature and space serve as heat transfer parameters. Slip effects minimize the thermal boundary layers as well as concentration development. It is discovered that CuO-Water, as well as Cu-Water nanofluids, have homogeneous boundary layers (concentration, thermal and momentum),and as contrasted with the CuO-Water nanofluids, the mass, and the heat transfer rate is higher in Cu-Water nanofluids. The paper concludes by comparing the outcomes of the current approach with findings that already existed.


2018 ◽  
Vol 14 (5) ◽  
pp. 1101-1114 ◽  
Author(s):  
K. Suneetha ◽  
S.M. Ibrahim ◽  
G.V. Ramana Reddy

Purpose The purpose of this paper is to investigate the steady 2D buoyancy effects on MHD flow over a permeable stretching sheet through porous medium in the presence of suction/injection. Design/methodology/approach Similarity transformations are employed to transform the governing partial differential equations into ordinary differential equations. The transformed equations are then solved numerically by a shooting technique. Findings The working fluid is examined for several sundry parameters graphically and in tabular form. It is observed that with an increase in magnetic field and permeability of porous parameter, velocity profile decreases while temperature and concentration enhances. Stretching sheet parameter reduces velocity, temperature and concentration, whereas it increases skin friction factor, Nusselt number and Sherwood number. Originality/value Till now no numerical studies are reported on the effects of heat source and thermal radiation on MHD flow over a permeable stretching sheet embedded in porous medium in the presence of chemical reaction.


Author(s):  
Hunegnaw Dessie ◽  
Naikoti Kishan

In this paper, unsteady MHD flow of heat and mass transfer of Cu-water and TiO2-water nanofluids over stretching sheet with a non-uniform heat/source/sink considering viscous dissipation and chemical reaction is investigated. The governing partial differential equations with the corresponding boundary conditions are transformed to a system of non-linear ordinary differential equations and solved using Keller box method. The velocity, temperature and concentration profiles are obtained and the influences of various relevant parameters, namely the magnetic parameter M, Prandtl number Pr, Eckert number Ec, Schmidt number Le , chemical reaction parameter K,unsteadiness parameter S and the Soret number Sr on velocity, temperature and concentration profiles are discussed. The skin-friction coefficient–f''(0), heat transfer coefficient –θ'(0) and mass transfer coefficient –φ'(0) are presented in tables. A comparison with published results is also presented and found in good agreement. Keywords: MHD; Keller box method; unsteady; nanofluid; non-uniform heat/source/sink; chemical reaction; viscous dissipation.


Author(s):  
Chalavadi Sulochana ◽  
Samrat S. Payad ◽  
Naramgari Sandeep

This study deals with the three-dimensional magnetohydrodynamic Casson fluid flow, heat and mass transfer over a stretching surface in the presence of non-uniform heat source/sink, thermal radiation and Soret effects. The governing partial differential equations are transformed to nonlinear ordinary differential equations by using similarity transformation, which are then solved numerically using Runge-Kutta based shooting technique. We obtained good accuracy of the present results by comparing with the exited literature. The influence of dimensionless parameters on velocity, temperature and concentration profiles along with the friction factor, local Nusselt and Sherwood numbers are discussed with the help of graphs and tables. It is found that the positive values of non-uniform heat source/sink parameters acts like heat generators and helps to develop the temperature profiles of the flow.


Sign in / Sign up

Export Citation Format

Share Document