scholarly journals Finite element analysis of natural fibers composites: A review

2020 ◽  
Vol 9 (1) ◽  
pp. 853-875 ◽  
Author(s):  
Mohamad Alhijazi ◽  
Qasim Zeeshan ◽  
Zhaoye Qin ◽  
Babak Safaei ◽  
Mohammed Asmael

AbstractNatural fiber composites (NFCs) also termed as biocomposites offer an alternative to the existing synthetic fiber composites, due to their advantages such as abundance in nature, relatively low cost, lightweight, high strength-to-weight ratio, and most importantly their environmental aspects such as biodegradability, renewability, recyclability, and sustainability. Researchers are investigating in depth the properties of NFC to identify their reliability and accessibility for being involved in aircrafts, automotive, marine, sports’ equipment, and other engineering fields. Modeling and simulation (M&S) of NFCs is a valuable method that contributes in enhancing the design and performance of natural fibers composite. Recently many researchers have applied finite element analysis to analyze NFCs’ characteristics. This article aims to present a comprehensive review on recent developments in M&S of NFCs through classifying the research according to the analysis type, NFC type, model type, simulation platform and parameters, and research outcomes, shedding the light on the main applicable theories and methods in this area, aiming to let more experts know the current research status and also provide some guidance for relevant researches.

2016 ◽  
Vol 106 ◽  
pp. 285-294 ◽  
Author(s):  
William T. Kern ◽  
Wonsuk Kim ◽  
Alan Argento ◽  
Ellen C. Lee ◽  
Deborah F. Mielewski

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
D. Saravana Bavan ◽  
G. C. Mohan Kumar

Natural fiber composites are termed as biocomposites or green composites. These fibers are green, biodegradable, and recyclable and have good properties such as low density and low cost when compared to synthetic fibers. The present work is investigated on the finite element analysis of the natural fiber (maize) composite beam, processed by means of hand lay-up method. Composite beam material is composed of stalk-based fiber of maize and unsaturated polyester resin polymer as matrix with methyl ethyl ketone peroxide (MEKP) as a catalyst and Cobalt Octoate as a promoter. The material was modeled and resembled as a structural beam using suitable assumption and analyzed by means of finite element method using ANSYS software for determining the deflection and stress properties. Morphological analysis and X-ray diffraction (XRD) analysis for the fiber were examined by means of scanning electron microscope (SEM) and X-ray diffractometer. From the results, it has been found that the finite element values are acceptable with proper assumptions, and the prepared natural fiber composite beam material can be used for structural engineering applications.


2014 ◽  
Vol 592-594 ◽  
pp. 363-367 ◽  
Author(s):  
Vishnu Prasad ◽  
G. Venkatachalam ◽  
Akshat Rathi ◽  
S. Rajakumar

During last few years, the interest in using natural fibers as reinforcement in polymers has increased significantly. Natural fibers are not only strong and lightweight but also relatively very cheap and bio-degradable. In this work, an investigation is carried out on jute fiber, a natural fiber. Jute fiber has gained interest in the composite field due to its superior specific properties compared to manmade synthetic fibers like glass, Kevlar, asbestos, etc. The present work describes the development and characterization of natural fiber based composites consisting of jute fiber as reinforcement and hybrid resin consisting of general purpose resin and cashew nut shell resin as matrix material. The composites are fabricated using hand lay-up technique. The tensile strength is studied using experimental and numerical analysis. The nature of hybrid matrix at different composition is also studied. The commercial Finite Element Analysis software ANSYS is used for numerical study.


2021 ◽  
Vol 7 (2) ◽  
pp. 58
Author(s):  
Celal Çakıroğlu ◽  
Gebrail Bekdaş

In the recent years natural fiber reinforced composites are increasingly receiving attention from the researchers and engineers due to their mechanical properties comparable to the conventional synthetic fibers and due to their ease of preparation, low cost and density, eco-friendliness and bio-degradability. Natural fibers such as kenaf or flux are being considered as a viable replacement for glass, aramid or carbon. Extensive experimental studies have been carried out to determine the mechanical behavior of different natural fiber types such as the elastic modulus, tensile strength, flexural strength and the Poisson’s ratio. This paper presents a review of the various experimental studies in the field of fiber reinforced composites while summarizing the research outcome about the elastic properties of the major types of natural fiber reinforced composites. Furthermore, the performance of a kenaf reinforced composite plate is demonstrated using finite element analysis and results are compared to a glass fiber reinforced laminated composite plate.


2014 ◽  
Vol 49 (9) ◽  
pp. 1057-1069 ◽  
Author(s):  
Baris Sabuncuoglu ◽  
Svetlana Orlova ◽  
Larissa Gorbatikh ◽  
Stepan V Lomov ◽  
Ignaas Verpoest

Author(s):  
Jifeng Wang ◽  
Qubo Li ◽  
Norbert Mu¨ller

A mechanical and optimal analyses procedure is developed to assess the stresses and deformations of Novel Wound Composite Axial-Impeller under loading conditions particular to centrifuge. This procedure is based on an analytical method and Finite Element Analysis (FEA, commercial software ANSYS) results. A low-cost, light-weight, high-performance, composite turbomachinery impeller from differently designed patterns will be evaluated. Such impellers can economically enable refrigeration plants using water as a refrigerant (R718). To create different complex patterns of impellers, MATLAB is used for creating the geometry of impellers, and CAD software UG is used to build three-dimensional impeller models. Available loading conditions are: radial body force due to high speed rotation about the cylindrical axis and fluid forces on each blade. Two-dimensional plane stress and three-dimensional stress finite element analysis are carried out using ANSYS to validate these analytical mechanical equations. The von Mises stress is investigated, and maximum stress and Tsai-Wu failure criteria are applied for composite material failure, and they generally show good agreement.


2018 ◽  
Vol 1148 ◽  
pp. 61-71 ◽  
Author(s):  
V. Joshua Jaya Prasad ◽  
Puli Suresh Kumar

Recently, there has been an exponential growth in research and innovation in the natural fiber composites (NFC) due to their diversified applications in the field of engineering. Biodegradability, light weight, formability and availability at low cost are the attractive merits of the natural fibers. Mechanical, Thermal and Machinabilty properties of Natural fiber composites have their own advantage and adoptability in the field of automobile, power plants, aeronautical, defense and naval applications. This review aims to provide an overview of the comparison of differ types of Natural fiber composites, factors that affect the mechanical, thermal and machinabilty of NFCs and their engineering applications.


Author(s):  
Saurabh Srivastava ◽  
Sachin Salunkhe ◽  
Sarang Pande ◽  
Bhavin Kapadiya

Steering knuckle connects steering system, suspension system and braking system to the chassis. The steering knuckle contributes a significant weight to the total weight of a vehicle. Increasing the efficiency of an automobile without compromising the performances is the major challenge faced by the manufacturers. This paper presents an effective topology optimization of steering knuckle used in a vehicle with the primary objective of minimizing weight. The study on optimization of knuckle is divided into two phases, the first phase involves making of a computer-aided design model of the original steering knuckle and carry out finite element analysis on the knuckle by estimating the loads, which are acting on the component. In the second phase, design optimization of the model of steering knuckle is carried out, and excess material is removed at the region where induced stress is negligible as obtained in finite element analysis assuming standard boundary and loading conditions. The paper describes a research work carried out to optimize structural topology giving the essential details. The methodology may be applied to optimize structural components used in applications where the ratio of desired properties to the cost, generally in terms of weight, is to be optimized. In the case of automobiles, strength to weight ratio has to be maximized. New researchers working in the area will have an understanding of the procedures, and further, the techniques may be applied to design in general.


2011 ◽  
Vol 87 ◽  
pp. 106-112 ◽  
Author(s):  
Amiri Asfarjani Alireza ◽  
Adibnazari Sayid ◽  
Reza Kashyzadeh Kazem

Fibrous composites are finding more and more applications in aerospace, automotive, and naval industries. They have high stiffness and strength to weight ratio and good rating in regards to life time fatigue. Investigating mechanical behavior under dynamic loads to replace this material is very important. In the present article, investigate Fatigue of Unidirectional Fibrous Composites by using finite element analysis. So, to achieve this purpose Firstly, modeling fiber and matrix in separate case and simulated semi actual conditions, attained S-N curve of fiber and matrix and after that by using micromechanical model of combination fiber and matrix can approach S-N curve of Unidirectional Fibrous Composites. Finally, Comparisons of the finite element analysis of Ansys and the experimental predictions indicate based on three point bending fatigue testing that the results are satisfactorily in good agreement with each other which approves the power law assumption in the model.


Sign in / Sign up

Export Citation Format

Share Document