scholarly journals Static and dynamic analyses of auxetic hybrid FRC/CNTRC laminated plates

2020 ◽  
Vol 9 (1) ◽  
pp. 1625-1642
Author(s):  
Xu-Hao Huang ◽  
Jian Yang ◽  
Iftikhar Azim ◽  
Xin Ren ◽  
Xing-er Wang

Abstract In this work, a hybrid laminated plate is developed by changing ply orientations and stacking sequences. The hybrid laminated plate is composed of carbon nanotube reinforced composite and fiber reinforced composite layers. Negative Poisson’s ratio (NPR) is obtained for the case of [22F/(22C/−22C)3T/−22F] laminate. A theoretical laminated model considering geometric nonlinearity and shear deformation is presented. Based on a two-step perturbation method, the solutions of the motion equations are obtained to capture the nonlinear frequencies and load–deflection curves. On this basis, the fourth-order Runge–Kutta method is used to obtain the dynamic response of hybrid laminated plates. The presented model is verified by comparing the results obtained analytically and numerically. Several factors such as loading and distribution of carbon nanotubes (CNTs), and foundation type are considered in parametric study. Numerical results indicate that the thermal-mechanical behavior of hybrid laminated plates significantly improved by properly adjusting the CNT distribution. In addition, the results reveal that changes in temperature and foundation stiffness have pronounced influence on the nonlinear vibration characteristics of hybrid laminate plates with NPR as compared to those with positive Poisson’s ratio.

1970 ◽  
Vol 37 (4) ◽  
pp. 1031-1036 ◽  
Author(s):  
J. M. Whitney ◽  
N. J. Pagano

A bending theory for anisotropic laminated plates developed by Yang, Norris, and Stavsky is investigated. The theory includes shear deformation and rotary inertia in the same manner as Mindlin’s theory for isotropic homogeneous plates. The governing equations reveal that unsymmetrically laminated plates display the same bending-extensional coupling phenomenon found in classical laminated plate theory based on the Kirchhoff assumptions. Solutions are presented for bending under transverse load and for flexural vibration frequencies of symmetric and nonsymmetric lamninates. Good agreement is observed in numerical results for plate bending as compared to exact solutions obtained from classical elasticity theory. For certain fiber-reinforced composite materials, radical departure from classical laminated plate theory is indicated.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3718
Author(s):  
Xu-hao Huang ◽  
Jian Yang ◽  
Iftikhar Azim ◽  
Xing-er Wang ◽  
Xin Ren

In the current work, a novel hybrid laminate with negative Poisson’s ratio (NPR) is developed by considering auxetic laminate which is composed of carbon nanotube-reinforced composite (CNTRC) and fiber-reinforced composite (FRC) materials. The maximum magnitude of out-of-plane NPR is identified in the case of (20 F/20 C/−20 C/20 C) S laminate as well. Meanwhile, a method for the geometric non-linear analysis of hybrid laminated beam with NPR including the non-linear bending, free, and forced vibrations is proposed. The beam deformation is modeled by combining higher-order shear-deformation theory (HSDT) and large deflection theory. Based on a two-step perturbation approach, the asymptotic solutions of the governing equations are obtained to capture the linear and non-linear frequencies and load-deflection curves. Moreover, a two-step perturbation methodology in conjunction with fourth-order Runge–Kutta method is employed to solve the forced-vibration problem. Several key factors, such as CNT distribution, variations in the elastic foundation, and thermal stress, are considered in the exhaustive analysis. Theoretical results for some particular cases are given to examine the geometric non-linearity behavior of hybrid beam with NPR as well as positive Poisson’s ratio (PPR).


Sign in / Sign up

Export Citation Format

Share Document