scholarly journals Combined effects of nano-silica and silica fume on the mechanical behavior of recycled aggregate concrete

2021 ◽  
Vol 10 (1) ◽  
pp. 819-838
Author(s):  
Tang Yunchao ◽  
Chen Zheng ◽  
Feng Wanhui ◽  
Nong Yumei ◽  
Li Cong ◽  
...  

Abstract Recycled aggregate concrete (RAC) is an environmentally friendly material. However, owing to inherent characteristics of the recycled aggregate (RA), it is difficult to promote and apply it in structural engineering. Silica fume (SF) and nano-silica (NS) have different characteristics as additives for RAC. It has been proven that adding SF only enhances the strength of RAC at a later stage, and NS can improve the early strength of RAC owing to its high pozzolanic activity. In this study, to further improve the properties of RAC, two types of additives were combined into RAC, which was named SF-NS-modified RAC (SSRAC). Compression and split tensile tests were conducted to analyze the mechanical properties of SSRAC at different curing ages. The results indicated that the combined addition of NS and SF improved the performance of RAC at early and later curing ages. Scanning electron microscopy and X-ray diffraction analyses were performed to explore the NS and SF mechanism. The results indicated that SF and NS in SSRAC had a good pozzolanic effect and underwent a secondary hydration reaction with calcium hydroxide to increase the production of calcium silicate hydrate, resulting in an increase in the properties of the interface transition zone. Finally, 6% SF and 2 or 3% NS are recommended as supplementary cementitious materials for RAC.

2018 ◽  
Vol 10 (1) ◽  
pp. 26-53
Author(s):  
Junzhou Duan ◽  
Yubin Lu ◽  
Shu Zhang ◽  
Xiquan Jiang

To comparatively study the tensile properties and fracture patterns of recycled aggregate concrete with various replacement percentages (i.e. 0%, 25%, 50%, 75%, and 100%) of recycled coarse aggregate, the dynamic direct tensile tests, splitting tests, and spalling tests of recycled aggregate concrete in the strain-rate range of 100–102 s−1 were carried out using large diameter (75 mm) split Hopkinson tensile bar and pressure bar. Test results show that for recycled aggregate concrete, the quasi-static direct tensile strength is more marvelous than its quasi-static splitting strength. When recycled coarse aggregate replacement percentage is 0%–75%, the replacement percentage impact minimally on the quasi-static tensile strength of recycled aggregate concrete. In dynamic tensile tests, there exists apparent difference between the dynamic direct tensile strength and dynamic splitting. The dynamic tensile strength of recycled aggregate concrete increases with the increase of average strain-rate in all three kinds of tests. The average strain-rate affects the damage form of recycled aggregate concrete, which indicates that the recycled aggregate concrete has obvious rate sensitivity. There shows no obvious regularity between the dynamic tensile strength and the recycled coarse aggregate replacement percentage. And the indirect tensile strength calculation method used in this article offers the theoretical basis for the engineering application of recycled aggregate concrete.


Sign in / Sign up

Export Citation Format

Share Document