scholarly journals Comparative analysis between measured and calculated concentrations of major actinides using destructive assay data from Ohi-2 PWR

Nukleonika ◽  
2015 ◽  
Vol 60 (3) ◽  
pp. 571-580 ◽  
Author(s):  
Mikołaj Oettingen ◽  
Jerzy Cetnar

Abstract In the paper, we assess the accuracy of the Monte Carlo continuous energy burnup code (MCB) in predicting final concentrations of major actinides in the spent nuclear fuel from commercial PWR. The Ohi-2 PWR irradiation experiment was chosen for the numerical reconstruction due to the availability of the final concentrations for eleven major actinides including five uranium isotopes (U-232, U-234, U-235, U-236, U-238) and six plutonium isotopes (Pu-236, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242). The main results were presented as a calculated-to-experimental ratio (C/E) for measured and calculated final actinide concentrations. The good agreement in the range of ±5% was obtained for 78% C/E factors (43 out of 55). The MCB modeling shows significant improvement compared with the results of previous studies conducted on the Ohi-2 experiment, which proves the reliability and accuracy of the developed methodology.

Author(s):  
Vu Thanh Mai ◽  
Donny Hartanto ◽  
Pham Nhu Viet Ha ◽  
Nguyen Thi Dung ◽  
Bui Thi Hoa ◽  
...  

The ADS (accelerator driven system) is recognized as a promising system to annihilate the radioactivity of nuclear waste with its inherent safety feature and waste transmutation potential. Thus, conceptual designs of ADS are widely carrying out. In order to verify the accuracy of an innovative ADS core modeling by using simulation codes, the reactivity calculations of CERMET fueled ADS were conducted using two Monte Carlo codes, Serpent and MCNP6 with ENDF/B-VII.0 library. The comparison shows a good agreement between two codes including the eigenvalue (less than 50 pcm) and fuel temperature feedback (discrepancy is within the standard deviation). It implies that the ADS was modelled successfully and can be used for further investigation.  Keywords: CERMET fueled ADS, Serpent code, MCNP6, reactivity calculation.


Nukleonika ◽  
2018 ◽  
Vol 63 (3) ◽  
pp. 87-91
Author(s):  
Mikołaj Oettingen ◽  
Przemysław Stanisz

Abstract This paper describes the methodology developed for the numerical reconstruction and modelling of the thorium-lead (Th-Pb) assembly available at the Department of Nuclear Energy, Faculty of Energy and Fuels, AGH University, Krakow, Poland. This numerical study is the first step towards integral irradiation experiments in the Th-Pb environment. The continuous-energy Monte Carlo burnup (MCB) code available on supercomputer Prometheus of ACK Cyfronet AGH was applied for numerical modelling. The assembly consists of a hexagonal array of ThO2 fuel rods and metallic Pb rods. The design allows for different arrangements of the rods for various types of irradiations and experimental measurements. The intensity of the fresh neutron source intended for integral experiments is about 108 n/s, which corresponds to the mass of about 43 μg 252Cf. The source was modelled in the form of Cf2O3-Pd cermet wire embedded in two stainless steel capsules.


Author(s):  
Yishu Qiu ◽  
Manuele Aufiero ◽  
Kan Wang ◽  
Massimiliano Fratoni

A new capability for computing sensitivity coefficients of bilinear response functions has been developed in the Reactor Monte Carlo code RMC based on the collision history-based method. Originally implemented in the Monte Carlo code SERPENT2 in the frame of Delta-tracking technique, this method computes the perturbation of particle weight based on the concept of accepted events and rejected events. The implementation of this method in RMC is based on ray-tracking technique. The new capability in RMC has been verified by comparing sensitivity coefficients of adjoint-weighted kinetic parameters including effective prompt lifetime and effective delayed neutron fraction from SERPENT2 as well as two deterministic codes based on Equivalent Generalized Perturbation Theory (EGPT), TSUNAMI-1D and SUSD3D, through two fast metallic systems, the Jezebel and flattop problems. Good agreement among RMC, SERPENT2, SUSD3D and TSUNAMI-1D (EGPT) is observed.


Author(s):  
Wankui Yang ◽  
Baoxin Yuan ◽  
Songbao Zhang ◽  
Haibing Guo ◽  
Yaoguang Liu ◽  
...  

Deep penetration problems exist widely in reactor applications, such as SPRR300 (Swimming Pool Research Reactor 300), a light water moderated, enriched uranium fueled research reactor in China. Deterministic transport theory is intrinsically suitable for deep penetration. But there exist some problems when it’s applied in SPRR-300research reactors. First, the reactor core is complicated for geometry description in deterministic theory codes. Monte Carlo method has advantages in complex geometry modeling. And it uses continuous energy cross sections which are independent with specific reactor types and research objections. But usually it’s difficult to converge well enough to deal with deep penetration problems, even though there are a number of variance reduction techniques. Based on the advantages and disadvantages of Monte Carlo and Deterministic method, we proposed a coupled neutron transport calculation method for deep penetration. It combines advantages of these two methods. Firstly, we use Monte Carlo code to finish fine modeling and do the whole reactor core calculation. Domestically developed Monte Carlo code JMCT is used to do the neutron transport calculation. Then homogenized group constants in each mesh are calculated from JMCT output by a self-developed script. Afterwards, we do the whole reactor calculation with deterministic theory code TORT. It directly uses group constants generated by Monte Carlo code. Finally, we can get the deep penetration calculation results from TORT output. Verification is carried out by comparing the group constants of benchmark problem, and by comparing keff calculated by this method with continuous energy Monte Carlo method. Benchmark calculation is conducted with OECD/NEA slab benchmark problem. The comparison shows that group constants generated by this study are in good agreement with results from published references. Then above group constants are applied to 3-dimensional discrete ordinates deterministic theory transport code TORT. But keff calculated by TORT is a little lower than that calculated by Monte Carlo code JMCT. To minimize other influence factors, different Sn/Pn order, and different mesh size in TORT has been tried. Unfortunately the keff difference between these two methods remains. Even though the keff results in this benchmark are less than keff calculated by continuous energy MC method, Benchmark results show that all the group constants generated by this method are in good agreement with existing references. So it can be expected that after further verification and validation, this coupled method can be effectively applied to the deep penetration problem in such kind of research reactors.


2021 ◽  
Vol 2 (2) ◽  
pp. 132-151
Author(s):  
Vito Vitali ◽  
Florent Chevallier ◽  
Alexis Jinaphanh ◽  
Andrea Zoia ◽  
Patrick Blaise

Modal expansions based on k-eigenvalues and α-eigenvalues are commonly used in order to investigate the reactor behaviour, each with a distinct point of view: the former is related to fission generations, whereas the latter is related to time. Well-known Monte Carlo methods exist to compute the direct k or α fundamental eigenmodes, based on variants of the power iteration. The possibility of computing adjoint eigenfunctions in continuous-energy transport has been recently implemented and tested in the development version of TRIPOLI-4®, using a modified version of the Iterated Fission Probability (IFP) method for the adjoint α calculation. In this work we present a preliminary comparison of direct and adjoint k and α eigenmodes by Monte Carlo methods, for small deviations from criticality. When the reactor is exactly critical, i.e., for k0 = 1 or equivalently α0 = 0, the fundamental modes of both eigenfunction bases coincide, as expected on physical grounds. However, for non-critical systems the fundamental k and α eigenmodes show significant discrepancies.


2011 ◽  
Vol 168 (3) ◽  
pp. 226-241 ◽  
Author(s):  
Brian C. Kiedrowski ◽  
Forrest B. Brown ◽  
Paul P. H. Wilson

2021 ◽  
Author(s):  
Davood Hajitaghi Tehrani ◽  
Mehdi Solaimani ◽  
Mahboubeh Ghalandari ◽  
Bahman Babayar Razlighi

Abstract In the current research, the propagation of solitons in a saturable PT-symmetric fractional system is studied by solving nonlinear fractional Schrödinger equation. Three numerical methods are employed for this purpose, namely Monte Carlo based Euler-Lagrange variational schema, split-step method, and extrapolation approach. The results show good agreement and accuracy. The effect of different parameters such as potential depth, Levy indices, and saturation parameter, on the physical properties of the systems such as maximum intensity and soliton width oscillations are considered.


Sign in / Sign up

Export Citation Format

Share Document