scholarly journals Benefits and challenges of serious gaming – the case of “The Maladaptation Game”

2019 ◽  
Vol 4 (1) ◽  
pp. 107-117 ◽  
Author(s):  
Therese Asplund ◽  
Tina-Simone Neset ◽  
Janina Käyhkö ◽  
Lotten Wiréhn ◽  
Sirkku Juhola

AbstractThe use of digital tools and interactive technologies for farming systems has increased rapidly in recent years and is likely to continue to play a significant role in meeting future challenges. Particularly games and gaming are promising new and innovative communication strategies to inform and engage public and stakeholders with scientific research. This study offers an analysis of how a research based game on climate change maladaptation can support, but also hinder players’ sense-making processes. Through the analysis of eight gaming workshops, this study identifies challenges and support for the players’ sense-making. While it concludes that conceptual thinking of game content sometimes clashes with players’ everyday experiences and practice, possibly resulting in loss of credibility, this study also concludes that gaming may function as an eye-opener to new ways of thinking. Overall, this paper suggests that the communication of (social) science and agricultural practices through serious gaming has great potential but at the same time poses challenges due to different knowledge systems and interpretive frameworks among researchers and practitioners.

Author(s):  
Mame Sokhatil Ndoye ◽  
Jimmy Burridge ◽  
Rahul Bhosale ◽  
Alexandre Grondin ◽  
Laurent Laplaze

In Africa, agriculture is largely based on low-input and small-holder farming systems that use little inorganic fertilizers and have limited access to irrigation and mechanization in comparison to modern agricultural systems. Improving agricultural practices and developing new cultivars adapted to these low-input environments, where production already suffers from climate change, is a major priority for ensuring food security in the future. Root phenes improving water and nutrient uptake could represent a solution toward achieving these goals. In this review, we illustrate how breeding for specific root phenes could improve crop adaptation and resilience in Africa using three case studies covering very contrasted low-input agro-ecosystems. We conclude with a discussion on how these phenes could be validated and made available to breeders and agronomists.


2020 ◽  
Vol 22 (1) ◽  
pp. 21-45 ◽  
Author(s):  
Huy Duc Dang

PurposeAgricultural systems in Mekong Delta have transformed to cope with climate change. Various researches pointed out that integrated agriculture-aquaculture (IAA) farming systems (i.e., rice-shrimp, rice-fish…) emerged as potential climate adaptive practices. However, limited studies are attempting to assess the sustainability of these agricultural practices. Therefore, it is essential to assess whether or not these systems will be sustainable in the context of climate change and what can be done to make it sustainable. The present study conducted the sustainability assessment of the rice-shrimp system to identify potential areas for improvement as well as policy implication to increase resilience and adaptation of coastal IAA system which could contribute to the understanding of other coastal agricultural deltas around the globe.Design/methodology/approachThis study used a quantitative approach including the assessment protocol of van Asselt et al. (2014), the assessment framework of Vanloon et al. (2005), and the MCA methodology to flexibly and holistically assess the sustainability level of agricultural systems.FindingsResults concluded that rice-shrimp systems have the potential to improve livelihood, food security, and adaptation of coastal farmers. Major improvements should be considered for productivity, efficiency, and equity themes, while minor improvements can be made for stability, durability, and compatibility themes.Originality/valueThis research could be used as a guideline for sustainability assessment in a context-specific case study of IAA, which showed a potential for the application of other climate-smart IAAs in similar contexts around the globe.


2021 ◽  
Author(s):  
Bernard Ndubuisi Okafor ◽  
Japhet J. Yaduma

Cucumber (Cucumis sativus. L) is an important crop; widely cultivated in different agroecologies of Nigeria. Its production continues to gain attention in Nigerian communities because of their nutritional and economic values. Average yield per/ha is below world average. Factors responsible for the low yield include inappropriate farming systems, climate change, pests and diseases infestation, poor access to credit facilities, inappropriate method of cultivation, distance to market and low availability of land. Important but often neglected is the quality/fertility status of cucumber producing soils of Nigeria. Fertiliser use is inadequate and application is often based on blanket recommendation. Low soil quality and poor agronomic management have contributed to >40% decrease in yield. With good agricultural practices and soil management, optimum yield can be attained.


Author(s):  
Mame Sokhatil Ndoye ◽  
Jimmy Burridge ◽  
Rahul Bhosale ◽  
Alexandre Grondin ◽  
Laurent Laplaze

In Africa, agriculture is largely based on low-input and small-holder farming systems that use little inorganic fertilizers and have limited access to irrigation and mechanization. Improving agricultural practices and developing new cultivars adapted to these low-input environments, where production already suffers from climate change, is a major priority for ensuring food security in the future. Root traits improving water and nutrient uptake could represent a solution toward achieving these goals. In this review, we illustrate how breeding for specific root traits could improve crop adaptation and resilience in Africa using three case studies covering very contrasted low-input agroecosystems. First, we review how targeted changes in root system architecture allowed a dramatic increase in common bean yield in low input agroecosystems of South East Africa. We next discuss how root traits could be targeted to improve the productivity and resilience of dryland cereals in the face of climate change and soil degradation. Finally, we evaluate how root traits could be mobilized to develop water-saving rice agroecosystems for West Africa. We conclude with a discussion on how to prioritize target root traits, how they could be validated and made available to breeders and farmers through participatory approaches.


Author(s):  
Ihsan Jamil ◽  
Wen Jun ◽  
Bushra Mughal ◽  
Muhammad Haseeb Raza ◽  
Muhammad Ali Imran ◽  
...  

Author(s):  
Marianna Fenzi ◽  
Paul Rogé ◽  
Angel Cruz-Estrada ◽  
John Tuxill ◽  
Devra Jarvis

AbstractLocal seed systems remain the fundamental source of seeds for many crops in developing countries. Climate resilience for small holder farmers continues to depend largely on locally available seeds of traditional crop varieties. High rainfall events can have as significant an impact on crop production as increased temperatures and drought. This article analyzes the dynamics of maize diversity over 3 years in a farming community of Yucatán state, Mexico, where elevated levels of precipitation forced farmers in 2012 to reduce maize diversity in their plots. We study how farmers maintained their agroecosystem resilience through seed networks, examining the drivers influencing maize diversity and seed provisioning in the year preceding and following the 2012 climatic disturbance (2011–2013). We found that, under these challenging circumstances, farmers focused their efforts on their most reliable landraces, disregarding hybrids. We show that farmers were able to recover and restore the diversity usually cultivated in the community in the year following the critical climate event. The maize dynamic assessed in this study demonstrates the importance of community level conservation of crop diversity. Understanding farmer management strategies of agrobiodiversity, especially during a challenging climatic period, is necessary to promote a more tailored response to climate change in traditional farming systems.


2021 ◽  
Vol 67 (4) ◽  
pp. 3634-3648
Author(s):  
Erika Koppányné Szabó ◽  
Krisztina Takács

By 2050, 9.8 billion people are projected to live on Earth, which means that we need to double our current food production to keep pace with such a large population increase. In addition, rising greenhouse gas emissions and the associated climate change are placing a significant strain on the planet’s ability to sustain itself. However, in order to increase the quantity of proteins of plant origin, it is necessary to increase crop production areas, harvesting frequencies and the quantity of crops produced. Unfortunately, the optimization of these factors is already very close to the available maximum in the current situation. The developed cultivation systems and maximum utilization of the soil power leads to very serious environmental problems, soil destruction, loss of biodiversity and serious environmental pollution through the transport of the produced plant raw materials. This poses a serious challenge to food security and further increases the risk of hunger. There is therefore a need for agricultural practices that can lead to the cultivation of food and feed crops that have better sustainability indicators and are more resilient to climate change, which can be used to safely produce health-promoting feeds, as well as novel and value-added foods. Within this group, a particular problem is presented by the protein supply of the population, as currently about one billion people do not have adequate protein intake. However, conventional protein sources are not sufficient to meet growing protein needs. As mentioned above, food and feed proteins are based on plant proteins. In recent years, a prominent role has been played by the research into alternative proteins and the mapping of their positive and negative properties. Among alternative proteins, special attention has been paid to various yeasts, fungi, bacteria, algae, singe cell proteins (SCPs) and insects. In this paper, we focus on the presentation of algae, particularly microalgae, which are of paramount importance not only because of their significant protein content and favorable amino acid composition, but also because they are also sources of many valuable molecules, such as polyunsaturated fatty acids, pigments, antioxidants, drugs and other biologically active compounds. It is important to learn about microalgae biomass in order to be able to develop innovative health food products.


2017 ◽  
Vol 18 (3) ◽  
pp. 637-650 ◽  
Author(s):  
Imen Souissi ◽  
Jean Marie Boisson ◽  
Insaf Mekki ◽  
Olivier Therond ◽  
Guillermo Flichman ◽  
...  

2021 ◽  
Vol 748 (1) ◽  
pp. 012039
Author(s):  
Tualar Simarmata ◽  
M Khais Proyoga ◽  
Diyan Herdiyantoro ◽  
Mieke R Setiawati ◽  
Kustiwa Adinata ◽  
...  

Abstract Climate change (CC) is real and threatens the livelihood of most smallholder farmers who reside along the coastal area. The CC causes the rise of temperature (0.2-0.3°C/decade) and sea level (SRL = 5 mm/year), drought and floods to occur more frequently, the change of rainfall intensity and pattern and shifting of planting season and leads to the decreasing of crop yield or yield loss. Most of the paddy soil has been exhausted and degraded. About 50% of the rice field along the coastline is effected by high salinity and causes significant yield losses. The research was aimed to summarize the results of the system of organic based aerobic rice intensification (known as IPATBO) and of two climate filed school (CFS) in Cinganjeng and Rawapu that situated along the coastline of Pangandaran and Cilacap. Both IPATBO and CFS have adopted the strategy of climate-resilient sustainable agriculture (CRSA) for restoring the soil health and increasing rice productivity, and as well as to empower the farmer community. The implementation of IPATBO (2010-2020) in the different areas has increased the soil health, fertilizers, and water efficiency (reduce inorganic by 25-50%, and water by 30-40%) and increased rice productivity by at least 25-50%. Both CFS in Ciganjeng and Rawaapu were able to improve soil fertility, increase rice productivity, and farmer capacity. This result concludes the agro-ecological based CRSA and CFS can be adopted for the increasing the resilient of agricultural practices and farmers in adapting to climate change


Author(s):  
Nnyaladzi Batisani ◽  
Flora Pule-Meulenberg ◽  
Utlwang Batlang ◽  
Federica Matteoli ◽  
Nelson Tselaesele

Sign in / Sign up

Export Citation Format

Share Document