scholarly journals Evaluating the use of human aware navigation in industrial robot arms

2021 ◽  
Vol 12 (1) ◽  
pp. 379-391
Author(s):  
Matthew Story ◽  
Cyril Jaksic ◽  
Sarah R. Fletcher ◽  
Philip Webb ◽  
Gilbert Tang ◽  
...  

Abstract Although the principles followed by modern standards for interaction between humans and robots follow the First Law of Robotics popularized in science fiction in the 1960s, the current standards regulating the interaction between humans and robots emphasize the importance of physical safety. However, they are less developed in another key dimension: psychological safety. As sales of industrial robots have been increasing over recent years, so has the frequency of human–robot interaction (HRI). The present article looks at the current safety guidelines for HRI in an industrial setting and assesses their suitability. This article then presents a means to improve current standards utilizing lessons learned from studies into human aware navigation (HAN), which has seen increasing use in mobile robotics. This article highlights limitations in current research, where the relationships established in mobile robotics have not been carried over to industrial robot arms. To understand this, it is necessary to focus less on how a robot arm avoids humans and more on how humans react when a robot is within the same space. Currently, the safety guidelines are behind the technological advance, however, with further studies aimed at understanding HRI and applying it to newly developed path finding and obstacle avoidance methods, science fiction can become science fact.

2020 ◽  
Vol 10 (23) ◽  
pp. 8666
Author(s):  
Rabab Benotsmane ◽  
László Dudás ◽  
György Kovács

The application of the Industry 4.0′s elements—e.g., industrial robots—has a key role in the efficiency improvement of manufacturing companies. In order to reduce cycle times and increase productivity, the trajectory optimization of robot arms is essential. The purpose of the study is the elaboration of a new “whip-lashing” method, which, based on the motion of a robot arm, is similar to the motion of a whip. It results in achieving the optimized trajectory of the robot arms in order to increase velocity of the robot arm’s parts, thereby minimizing motion cycle times and to utilize the torque of the joints more effectively. The efficiency of the method was confirmed by a case study, which is relating to the trajectory planning of a five-degree-of-freedom RV-2AJ manipulator arm using SolidWorks and MATLAB software applications. The robot was modelled and two trajectories were created: the original path and path investigate the effects of using the whip-lashing induced robot motion. The application of the method’s algorithm resulted in a cycle time saving of 33% compared to the original path of RV-2AJ robot arm. The main added value of the study is the elaboration and implementation of the newly elaborated “whip-lashing” method which results in minimization of torque consumed; furthermore, there was a reduction of cycle times of manipulator arms’ motion, thus increasing the productivity significantly. The efficiency of the new “whip-lashing” method was confirmed by a simulation case study.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 680
Author(s):  
Ethan Jones ◽  
Winyu Chinthammit ◽  
Weidong Huang ◽  
Ulrich Engelke ◽  
Christopher Lueg

Control of robot arms is often required in engineering and can be performed by using different methods. This study examined and symmetrically compared the use of a controller, eye gaze tracker and a combination thereof in a multimodal setup for control of a robot arm. Tasks of different complexities were defined and twenty participants completed an experiment using these interaction modalities to solve the tasks. More specifically, there were three tasks: the first was to navigate a chess piece from a square to another pre-specified square; the second was the same as the first task, but required more moves to complete; and the third task was to move multiple pieces to reach a solution to a pre-defined arrangement of the pieces. Further, while gaze control has the potential to be more intuitive than a hand controller, it suffers from limitations with regard to spatial accuracy and target selection. The multimodal setup aimed to mitigate the weaknesses of the eye gaze tracker, creating a superior system without simply relying on the controller. The experiment shows that the multimodal setup improves performance over the eye gaze tracker alone ( p < 0.05 ) and was competitive with the controller only setup, although did not outperform it ( p > 0.05 ).


Author(s):  
Mustafa Can Bingol ◽  
Omur Aydogmus

Purpose Because of the increased use of robots in the industry, it has become inevitable for humans and robots to be able to work together. Therefore, human security has become the primary noncompromising factor of joint human and robot operations. For this reason, the purpose of this study was to develop a safe human-robot interaction software based on vision and touch. Design/methodology/approach The software consists of three modules. Firstly, the vision module has two tasks: to determine whether there is a human presence and to measure the distance between the robot and the human within the robot’s working space using convolutional neural networks (CNNs) and depth sensors. Secondly, the touch detection module perceives whether or not a human physically touches the robot within the same work environment using robot axis torques, wavelet packet decomposition algorithm and CNN. Lastly, the robot’s operating speed is adjusted according to hazard levels came from vision and touch module using the robot’s control module. Findings The developed software was tested with an industrial robot manipulator and successful results were obtained with minimal error. Practical implications The success of the developed algorithm was demonstrated in the current study and the algorithm can be used in other industrial robots for safety. Originality/value In this study, a new and practical safety algorithm is proposed and the health of people working with industrial robots is guaranteed.


2013 ◽  
Vol 10 (04) ◽  
pp. 1350031 ◽  
Author(s):  
FRANZISKA ZACHARIAS ◽  
CHRISTOPH BORST ◽  
SEBASTIAN WOLF ◽  
GERD HIRZINGER

More and more systems are developed that include several robot arms, like humanoid robots or industrial robot systems. These systems are designed for complex tasks to be solved in cooperation by the robot arms. However, the capabilities of the individual robot arms to perform given tasks or the suitability of a multi-robot system for cooperative tasks cannot be intuitively comprehended. For planning complex tasks or designing robot systems, a representation of a robot arm's workspace is needed that allows to determine from which directions objects in the workspace can be reached. In this paper, the capability map is presented. It is a representation of a robot arm's kinematic capabilities in its workspace. The capability map is used to compare existing robot arms, to support the design phase of an anthropomorphic robot arm and to enable robot workcell planning.


Author(s):  
Aravinthkumar T ◽  
Suresh M ◽  
Vinod B

The abstract must be a precise and reflection of what is in your article. Manufacturing sector is moving towards industry 4.0 and demands a high end of automation in the process. In which industrial robots play a fundamental role for automating the processes such as pick and place, material handling, palletizing, welding, painting, assembly lines and many more endless applications. Increasing demand and necessity made more research on industrial robots, machine learning and artificial intelligence. Better kinematic analysis of robots leads to reliable, high precise and fast responsive system. But there is an absence of India based robot manufacturers to fulfil the rising demand. Again, this situation leads to a market for foreign robot makers instead of local players. Lack of knowledge in robotics, unavailability of robot parts and resources are pain points for this cause. As researchers in this domain and have a goal to resolve this issue by providing open source, easily accessible industrial robot technical resources to everyone. This research work focuses the design and development of 6 Degrees of Freedom articulated robot arm with kinematic analysis particularly forward and inverse kinematics.


Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 80 ◽  
Author(s):  
Doria ◽  
Cocuzza ◽  
Comand ◽  
Bottin ◽  
Rossi

In robotic processes, the compliance of the robot arm plays a very important role. In some conditions, for example, in robotic assembly, robot arm compliance can compensate for small position and orientation errors of the end-effector. In other processes, like machining, robot compliance may generate chatter vibrations with an impairment in the quality of the machined surface. In industrial robots, the compliance of the end-effector is chiefly due to joint compliances. In this paper, joint compliances of a serial six-joint industrial robot are identified with a novel modal method making use of specific modes of vibration dominated by the compliance of only one joint. Then, in order to represent the effect of the identified compliances on robot performance in an intuitive and geometric way, a novel kinematic method based on the concept of “Mozzi axis” of the end-effector is presented and discussed.


2021 ◽  
Vol 11 (4) ◽  
pp. 1777
Author(s):  
Ivan Kuric ◽  
Vladimír Tlach ◽  
Milan Sága ◽  
Miroslav Císar ◽  
Ivan Zajačko

Renishaw Ballbar QC20–W is primarily intended for diagnostics of CNC machine tools, but it is also used in connection with industrial robots. In the case of standard measurement, when the measuring plane is parallel to the robot base, not all robot joints move. The purpose of the experiments of the present article was to verify the hypothesis of the motion of all the robot joints when the desired circular path is placed on an inclined plane. In the first part of the conducted experiments is established hypothesis is confirmed, through positional analysis on a simulation model of the robot. They are then carried out practical measurements being evaluated the influence of individual robot joints to deform the circular path, shown as a polar graph. As a result, it is found that in the case of the robot used, changing the configuration of the robot arm has the greatest effect on changing the shape of the polar graph.


Author(s):  
Matthew Story ◽  
Phil Webb ◽  
Sarah R. Fletcher ◽  
Gilbert Tang ◽  
Cyril Jaksic ◽  
...  

AbstractCurrent guidelines for Human-Robot Collaboration (HRC) allow a person to be within the working area of an industrial robot arm whilst maintaining their physical safety. However, research into increasing automation and social robotics have shown that attributes in the robot, such as speed and proximity setting, can influence a person’s workload and trust. Despite this, studies into how an industrial robot arm’s attributes affect a person during HRC are limited and require further development. Therefore, a study was proposed to assess the impact of robot’s speed and proximity setting on a person’s workload and trust during an HRC task. Eighty-three participants from Cranfield University and the ASK Centre, BAE Systems Samlesbury, completed a task in collaboration with a UR5 industrial robot arm running at different speeds and proximity settings, workload and trust were measured after each run. Workload was found to be positively related to speed but not significantly related to proximity setting. Significant interaction was not found for trust with speed or proximity setting. This study showed that even when operating within current safety guidelines, an industrial robot can affect a person’s workload. The lack of significant interaction with trust was attributed to the robot’s relatively small size and high success rate, and therefore may have an influence in larger industrial robots. As workload and trust can have a significant impact on a person’s performance and satisfaction, it is key to understand this relationship early in the development and design of collaborative work cells to ensure safe and high productivity.


Sign in / Sign up

Export Citation Format

Share Document