scholarly journals Elaboration and characterization of multilayer polymeric membranes: effect of the chemical nature of polymers

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Youcef Sedkaoui ◽  
Naima Abdellaoui ◽  
Omar Arous ◽  
Hakim Lounici ◽  
Noreddine Nasrallah ◽  
...  

AbstractThe transport phenomena across polymeric membrane may be enhanced by applying various strengths inside or outside the system. Recently, polymer inclusion membrane (PIM) has been considered one of the most popular methods that acts as a sink for the contaminant and immobilizes it. In the literature, there is no report about how to achieve the synthesis of multi-layer PIMs. In this paper, an improvement of a novel category of membrane without carrier for performing ion separation is reported. Different membranes were elaborated from binary mixtures of polymers, cellulose triacetate (CTA), polymethyl methacrylate (PMMA) and polyvinyl chloride (PVC) using 2-nitrophenyl octyle-ether (NPOE) as plasticizer and carrier in the same time, in order to increase specific interactions between the different polymers. The membranes (Polymer 1– NPOE – Polymer 2) were synthesized by phase inversion method modified by changing the procedure of a plasticizer/carrier addition and characterized by FTIR, TGA, SEM, zeta potential and contact angle. The CTA-based membranes exhibited well-defined pores partially filled with the second polymer and NPOE. Overall, our results showed that the addition of NPOE resulted in homogeneous membranes with modified physical properties, such as thickness, and hydrophobicity. A study of transport of Pb(II) using the synthesized membranes was studied. Dialysis experiments of lead ions across a polymeric membrane have shown that (CTA + NPOE + PMMA) and (PMMA + NPOE + PVC) membranes proved a good performance in one stage by fixing 12.15 and 25.31% of lead, respectively, without any additionally added carrier and acids. These results confirm the affinity between a basic polymer (poly-methyl methacrylate) and the metallic ion (Pb2+).

2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Masooma Irfan ◽  
Hatijah Basri ◽  
M. Irfan

In this work, the effect of different phase inversion process on membrane morphology and performance was studied. Polyethersulfone (PES) based polymeric membranes was fabricated containing polyvinylpyrrolidone (PVP) and carboxylic functionalized multiwall carbon nanotubes (MWCNT) as additives and polyethylene glycol (PEG) having a molecular weight 1K, 10K and 35K (Dalton) were used as a model solution for observing the rejection/filteration ability of fabricated membranes. Non-solvent induce phase separation (NIP) and dry-wet phase separation (DWP) method was adopted for membrane synthesis. The FTIR spectra showed that PVP/MWCNT was effectively blended with PES polymer and different phase inversion method led to different internal morphologies of membranes as confirmed by FESEM images. The PEG rejection results suggested that membranes formed by DWP method had approximately double rejection ability than membranes formed by NIP process.


2014 ◽  
Vol 925 ◽  
pp. 18-22 ◽  
Author(s):  
P.C. Oh ◽  
N.A. Mansur

In this paper, flat sheet polysulfone (PSF) membrane and polysulfone/montmorillonite (PSF/MMT) mixed matrix membranes with different MMT contents were prepared by dry-wet phase inversion method.N-methyl-2-pyrrolidone (NMP) and deionized water were used as a solvent and coagulant, respectively. The morphology and structure of membranes were analyzed by scanning electron microscope. Thermogravimetric analysis was also performed to examine the thermal decomposition of the synthesized membrane. Results showed that MMT had a good dispersion in the PSF matrix.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 563
Author(s):  
Muhammad Zahid ◽  
Anum Rashid ◽  
Saba Akram ◽  
H. M. Fayzan Shakir ◽  
Zulfiqar Ahmad Rehan ◽  
...  

In this study, cellulose acetate (CA) was blended with sulfonated graphene oxide (SGO) nanomaterials to endow a nanocomposite membrane for wastewater treatment with improved hydrophilicity and anti-biofouling behavior. The phase inversion method was employed for membrane fabrication using tetrahydrofuran (THF) as the solvent. The characteristics of CA-SGO-doped membranes were investigated through thermal analysis, contact angle, SEM, FTIR, and anti-biofouling property. Results indicated that anti-biofouling property and hydrophilicity of CA-SGO nanocomposite membranes were enhanced with addition of hydrophilic SGO nanomaterials in comparison to pristine CA membrane. FTIR analysis confirmed the successful decoration of SGO groups on CA membrane surface while revealing its morphological properties through SEM analysis. Thermal analysis performed using DSC confirmed the increase in thermal stability of CA-SGO membranes with addition of SGO content than pure CA membrane.


2021 ◽  
Vol 55 (5-6) ◽  
pp. 697-704
Author(s):  
HANANE ABURIDEH ◽  
ZAHIA TIGRINE ◽  
DJAMILA ZIOUI ◽  
SARAH HOUT ◽  
DJILALI TASSALIT ◽  
...  

The main objective of this work has been to study the performance of membranes developed for treating purified wastewater. Polymeric membranes have been developed from solutions containing cellulose acetate (AC) and polysulfone (PSF), using N,N-dimethylformamide (DMF) as solvent and polyethylene glycol (PEG) as additive. The phase inversion method was chosen as a technique for producing the membrane films. The incorporation of PEG allowed us to study the effect of the additive on the morphological structure, and to predict the performance of the membranes formed. Examining the flux, permeability and selectivity of the membranes allowed studying the efficiency and performance of each membrane. The application results achieved in wastewater treatment at Chenoua/TIPAZA station were very satisfactory and in accordance with the standards required by WHO. The optimal performance, in terms of permeability and selectivity, was obtained for the MC membrane with the composition: PSF/PEG/AC of 25/12/63.


2011 ◽  
Vol 356-360 ◽  
pp. 2338-2343 ◽  
Author(s):  
Han Min Wang ◽  
Xue Li Gao ◽  
Bao Wei Su ◽  
Cong Jie Gao

The polyethersulfone ultra-filtration membrane was prepared by phase inversion method using polyethersulfone(PES), polyethylene glycol 400(PEG400) and N,N- dimethylamide(DMAC) as materials, and was modified by adding a capsaicin monomer named MBHBA which possess antibacterial property. The effects of MBHBA content on the ultra-filtration membrane performance were discussed. The results showed that the addition of MBHBA monomer effectively increased the membrane flux. And the modified membrane had strong inhibitory activity against Escherichia coli.


Author(s):  
Yuxin Pan ◽  
Kai Pei ◽  
Yucun Zhou ◽  
Tong Liu ◽  
Meilin Liu ◽  
...  

A straight, open and macro-porous Ni–BaZr0.1Ce0.7Y0.1Yb0.1O3 fuel electrode-supported protonic ceramic electrochemical cell has been fabricated by a modified phase-inversion method.


Sign in / Sign up

Export Citation Format

Share Document