X-ray absorption spectroscopy principles and practical use in materials analysis

2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Wolfgang Grünert ◽  
Konstantin Klementiev

AbstractThe X-ray Absorption Fine Structure (XAFS) with its subregions X-ray Absorption Near-edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) is a powerful tool for the structural analysis of materials, which is nowadays a standard component of research strategies in many fields. This review covers a wide range of topics related to its measurement and use: the origin of the fine structure, its analytical potential, derived from the physical basis, the environment for measuring XAFS at synchrotrons, including different measurement geometries, detection modes, and sample environments, e. g. for in-situ and operando work, the principles of data reduction, analysis, and interpretation, and a perspective on new methods for structure analysis combining X-ray absorption with X-ray emission. Examples for the application of XAFS have been selected from work with heterogeneous catalysts with the intention to demonstrate the strength of the method providing structural information about highly disperse and disordered systems, to illustrate pitfalls in the interpretation of results (e. g. by neglecting the averaged character of the information obtained) and to show how its merits can be further enhanced by combination with other methods of structural analysis and/or spectroscopy.

1977 ◽  
Vol 55 (11) ◽  
pp. 1968-1974 ◽  
Author(s):  
E. D. Crozier ◽  
F. W. Lytle ◽  
D. E. Sayers ◽  
E. A. Stern

The extended fine structure in the X-ray absorption coefficient is dominated by the interference of the photoelectron scattered by atoms in the immediate neighbourhood of the atom which absorbs the X-ray photon and thus can provide structural information about ordered or disordered systems. In this paper it is demonstrated that Extended X-Ray Absorption Fine Structure (EXAFS) measurements can be made on liquid systems at high temperatures. The technique is illustrated with results for As2Se3 in the liquid and amorphous states for temperatures between 100 and 773 K. A Fourier analysis of the EXAFS data reveals that a major structural rearrangement does not occur in the nearest neighbour shell when As2Se3 is melted. However, small structural changes do occur at the melting point which, within the limitations of the present data, suggest a slight increase in the nearest neighbour As–Se distance, a decrease in the number of nearest neighbours, and a decrease in the nearest neighbour disorder term σ12.


2015 ◽  
Vol 22 (1) ◽  
pp. 124-129 ◽  
Author(s):  
Weiwei Gu ◽  
Hongxin Wang ◽  
Kun Wang

A series of Ni dithiolene complexes Ni[S2C2(CF3)]2n(n= −2, −1, 0) (1,2,3) and a 1-hexene adduct Ni[S2C2(CF3)2]2(C6H12) (4) have been examined by NiK-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) spectroscopies. Ni XANES for1–3reveals clear pre-edge features and approximately +0.7 eV shift in the NiK-edge position for `one-electron' oxidation. EXAFS simulation shows that the Ni—S bond distances for1,2and3(2.11–2.16 Å) are within the typical values for square planar complexes and decrease by ∼0.022 Å for each `one-electron' oxidation. The changes in NiK-edge energy positions and Ni—S distances are consistent with the `non-innocent' character of the dithiolene ligand. The Ni—C interactions at ∼3.0 Å are analyzed and the multiple-scattering parameters are also determined, leading to a better simulation for the overall EXAFS spectra. The 1-hexene adduct4presents no pre-edge feature, and its NiK-edge position shifts by −0.8 eV in comparison with its starting dithiolene complex3. Consistently, EXAFS also showed that the Ni—S distances in4elongate by ∼0.046 Å in comparison with3. The evidence confirms that the neutral complex is `reduced' upon addition of olefin, presumably by olefin donating the π-electron density to the LUMO of3as suggested by UV/visible spectroscopy in the literature.


2016 ◽  
Vol 83 (2) ◽  
pp. 298-301
Author(s):  
N. Monarumit ◽  
N. Noirawee ◽  
A. Phlayrahan ◽  
K. Promdee ◽  
K. Won-in ◽  
...  

2016 ◽  
Vol 1133 ◽  
pp. 429-433
Author(s):  
Siti Nooraya Mohd Tawil ◽  
Shuichi Emura ◽  
Daivasigamani Krishnamurthy ◽  
Hajime Asahi

Local structures around gadolinium atoms in rare-earth (RE)-doped InGaGdN thin films were studied by means of fluorescence extended X-ray absorption fine structure (EXAFS) measured at the Gd LIII-edges. The samples were doped with Gd in-situ during growth by plasma-assisted molecular beam epitaxy (PAMBE). Gd LIII-edge EXAFS signal from the GaGdN, GdN and Gd foil were also measured as reference. The X-ray absorption near edge structure (XANES) spectra around Gd LIII absorption edge of InGaGdN samples observed at room temperature indicated the enhancement of intensities with the increase of Gd composition. Further EXAFS analysis inferred that the Gd atoms in InGaN were surrounded by similar atomic shells as in the case of GaGdN with the evidence indicating majority of Gd atoms substituted into Ga sites of InGaGdN. A slight elongation of bond length for the 2nd nearest-neighbor (Gd–Ga) of sample with higher Gd concentration was also observed.


1997 ◽  
Vol 3 (S2) ◽  
pp. 851-852
Author(s):  
H. Ade

Infrared, Raman, and fluorescence/luminescence microspectroscopy/microscopy in many instances seek to provide high sensitivity compositional and functional information that goes beyond mere elemental composition. This goal is shared by NEXAFS microscopy, in which Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy is employed to provide chemical sensitivity and can be relatively easily adopted in a scanning transmission x-ray microscope (STXM). In addition to compositional information, NEXAFS microscopy can exploit the dependence of x-ray absorption resonances on the bond orientation relative to the linearly polarized x rays (linear dichroism microscopy). For compositional analysis, NEXAFS microscopy is analogous to Electron Energy Loss Spectroscopy (EELS) in an electron microscope. However, when utilizing near edge spectral features, NEXAFS microscopy requires a considerable lower dose than EELS microscopy which makes it very suitable to studying radiation sensitive materials such as polymers. NEXAFS has shown to have excellent sensitivity to a wide range of moieties in polymers, including sensitivity to substitution isomerism.


2009 ◽  
Vol 130 (12) ◽  
pp. 124520 ◽  
Author(s):  
W. Gawelda ◽  
V.-T. Pham ◽  
R. M. van der Veen ◽  
D. Grolimund ◽  
R. Abela ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document