scholarly journals Influence of coupling effects on analytical solutions of functionally graded (FG) spherical shells of revolution

2021 ◽  
Vol 60 (1) ◽  
pp. 761-770
Author(s):  
Justyna Flis ◽  
Aleksander Muc

Abstract Due to the lack of commercially available finite elements packages allowing us to analyse the behaviour of porous functionally graded (FG) structures in this paper, axisymmetric deformations of coupled FG spherical shells are studied. The analytical solution is presented by using complex hypergeometric polynomial series. The results presented agree closely with the reference results for isotropic spherical shells of revolution. The influence of the effects of material properties is characterized by a multiplier characterizing an unsymmetric shell wall construction (stiffness coupling). The results can be easily adopted in design procedures. The present results can be treated as the benchmark for finite element investigations.

Author(s):  
Ahmed Raza ◽  
Himanshu Pathak ◽  
Mohammad Talha

In this work, stochastic perturbation-based vibration characteristics of cracked bi-material and functionally graded material (FGM) domain with uncertain material properties are investigated using the extended finite element method. The level set function is implemented to track the geometrical discontinuities. The partition of unity-based extrinsic enrichment technique is employed to model the crack and material interface. The exponential law is used to model the graded material properties of FGM. The First-order perturbation technique (FOPT) is implemented to predict the standard deviation of natural frequency for the given uncertainties in the material properties. The numerical results are presented to show the effect of geometrical discontinuities and material randomness on vibration characteristics.


Author(s):  
Ashish Tiwari ◽  
Pankaj Wahi ◽  
Niraj Sinha

Human tibia, the second largest bone in human body, is made of complex biological material having inhomogeneity and anisotropy in such a manner that makes it a functionally graded material. While analyses of human tibia assuming it to be made of different material regions have been attempted in past, functionally graded nature of the bone in the mechanical analysis has not been considered. This study highlights the importance of functional grading of material properties in capturing the correct stress distribution from the finite element analysis (FEA) of human tibia under static loading. Isotropic and orthotropic material properties of different regions of human tibia have been graded functionally in three different manners and assigned to the tibia model. The nonfunctionally graded and functionally graded models of tibia have been compared with each other. It was observed that the model in which functional grading was not performed, uneven distribution and unrealistic spikes of stresses occurred at the interfaces of different material regions. On the contrary, the models with functional grading were free from this potential artifact. Hence, our analysis suggests that functional grading is essential for predicting the actual distribution of stresses in the entire bone, which is important for biomechanical analysis. We find that orthotropic nature of the bone tends to increase the maximum von Mises stress in the entire tibia, while inclusion of cross-sectional inhomogeneity typically increases the stresses across normal cross section. Accordingly, our analysis suggests that both orthotropy as well as cross-sectional inhomogeneity should be included to correctly capture the stress distribution in the bone.


Author(s):  
Qi Liu ◽  
Yan Yu ◽  
Pingjian Ming

In this article, a new two-dimensional control volume finite element method has been developed for thermoelastic analysis in functionally graded materials. A nine-node quadrilateral element and a six-node triangular element are employed to deal with the mixed-grid problem. The unknown variables and material properties are defined at the node. The high-order shape functions of six-node triangular and nine-node quadrilateral element are employed to obtain the unknown variables and their derivatives. In addition, the material properties in functionally graded structure are also modeled by applying the high-order shape functions. The capabilities of the presented method to heat conduction problem, elastic problem, and thermoelastic problem have been validated. First, the defined location of material properties is found to be important for the accuracy of the numerical results. Second, the presented method is proven to be efficient and reliable for the elastic analysis in multi-phase materials. Third, the presented method is capable of high-order mixed grids. The memory and computational costs of the presented method are also compared with other numerical methods.


1999 ◽  
Vol 66 (1) ◽  
pp. 101-108 ◽  
Author(s):  
P. Gu ◽  
M. Dao ◽  
R. J. Asaro

A finite element based method is proposed for calculating stress intensity factors of functionally graded materials (FGMs). We show that the standard domain integral is sufficiently accurate when applied to FGMs; the nonhomogeneous term in the domain integral for nonhomogeneous materials is very small compared to the first term (the standard domain integral). In order to obtain it, the domain integral is evaluated around the crack tip using sufficiently fine mesh. We have estimated the error in neglecting the second term in terms of the radius of the domain for the domain integration, the material properties and their gradients. The advantage of the proposed method is that, besides its accuracy, it does not require the input of material gradients, derivatives of material properties; and existing finite element codes can be used for FGMs without much additional work. The numerical examples show that it is accurate and efficient. Also, a discussion on the fracture of the FGM interlayer structure is given.


2008 ◽  
Vol 75 (5) ◽  
Author(s):  
Madhu Kirugulige ◽  
Hareesh V. Tippur

Mixed-mode dynamic crack growth behavior in a compositionally graded particle filled polymer is studied experimentally and computationally. Beams with single edge cracks initially aligned in the direction of the compositional gradient and subjected to one-point eccentric impact loading are examined. Optical interferometry along with high-speed photography is used to measure surface deformations around the crack tip. Two configurations, one with a crack on the stiffer side of a graded sheet and the second with a crack on the compliant side, are tested. The observed crack paths are distinctly different for these two configurations. Furthermore, the crack speed and stress intensity factor variations between the two configurations show significant differences. The optical measurements are examined with the aid of crack-tip fields, which incorporate local elastic modulus variations. To understand the role of material gradation on the observed crack paths, finite element models with cohesive elements are developed. A user-defined element subroutine for cohesive elements based on a bilinear traction-separation law is developed and implemented in a structural analysis environment. The necessary spatial variation of material properties is introduced into the continuum elements by first performing a thermal analysis and then by prescribing material properties as temperature dependent quantities. The simulated crack paths and crack speeds are found to be in qualitative agreement with the observed ones. The simulations also reveal differences in the energy dissipation in the two functionally graded material (FGM) cases. T-stresses and hence the crack-tip constraint are significantly different. Prior to crack initiation, larger negative T-stresses near the crack tip are seen when the crack is situated on the compliant side of the FGM.


2015 ◽  
Vol 65 (1) ◽  
pp. 27-56 ◽  
Author(s):  
J. Murín ◽  
M. Aminbaghai ◽  
J. Hrabovský

Abstract In this contribution, results of elastostatic analysis of spatial composite beam structures are presented using our new beam finite element of double symmetric cross-section made of a Functionally Graded Material (FGM). Material properties of the real beams vary continuously in the longitudinal direction while variation with respect to the transversal and lateral directions is assumed to be symmetric in a continuous or discontinuous manner. Continuously longitudinal varying spatial Winkler elastic foundations (except the torsional foundation) and the effect of axial and shear forces are considered as well. Homogenization of spatially varying material properties to effective quantities with a longitudinal variation is done by the multilayer method (MLM). For the homogenized beam finite element the local stiffness matrix is established by means of the transfer matrix method. By the conventional finite element procedure, the global element stiffness matrix and the global system of equation for the beam structure are established for calculation of the global displacement vector. The secondary variables (internal forces and moments) are then calculated by means of the transfer relations on the real beams. Further, the mechanical stress in the real beams are calculated. Finally, the numerical experiments are carried out concerning the elastic-static analysis of the single FGM beams and beam structures in order to show the possibilities of our approach.


2017 ◽  
Vol 259 ◽  
pp. 184-189
Author(s):  
Michal Hasa ◽  
Miloš Zich

This article deals with a nonlinear analysis of the detail of the dapped-end beam, the design of which in practice usually employs the design procedures based on the strut-and-tie method. The article is a follow-up to the contribution released in 2014 which presented the experiment carried out with a view to verify the design procedure and to the study showing the influence of the used amount of vertical and inclined hanger reinforcement on the bearing capacity and behaviour of the detail under load. The experiment also included the tests of material properties performed on the used concrete. Along with the inspection certificates issued for the used reinforcement, these tests served as a basis for the nonlinear finite element analysis by the ATENA software. This article presents and compares the results of the aforementioned analysis and experiment.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Van-Ke Tran ◽  
Thanh-Trung Tran ◽  
Minh-Van Phung ◽  
Quoc-Hoa Pham ◽  
Trung Nguyen-Thoi

This article presents a finite element method (FEM) integrated with the nonlocal theory for analysis of the static bending and free vibration of the sandwich functionally graded (FG) nanoplates resting on the elastic foundation (EF). Material properties of nanoplates are assumed to vary through thickness following two types (Type A with homogeneous core and FG material for upper and lower layers and Type B with FG material core and homogeneous materials for upper and lower layers). In this study, the formulation of the four-node quadrilateral element based on the mixed interpolation of tensorial components (MITC4) is used to avoid “the shear-locking” problem. On the basis of Hamilton’s principle and the nonlocal theory, the governing equations for the sandwich FG nanoplates are derived. The results of the proposed model are compared with published works to verify the accuracy and reliability. Furthermore, the effects of geometric parameters and material properties on the static and free vibration behaviors of nanoplates are investigated in detail.


Sign in / Sign up

Export Citation Format

Share Document