Ambient air pollution exposure and lung function assessment of filling station attendants in Ibadan, Nigeria

2019 ◽  
Vol 34 (2) ◽  
pp. 211-218
Author(s):  
Toluwanimi Mobolade Oni ◽  
Godson R.E.E. Ana

Abstract Background There is an increasing range of adverse health effects associated with air pollution at very low concentrations. Few studies have assessed respiratory parameters among filling station attendants. Objectives This study assessed air pollutants; particulate matter (PM10) and total volatile organic compounds (TVOC) concentrations at filling stations as well as determined forced expiratory volume in one second (FEV1) and peak expiratory flow rate (PEFR) levels among filling station attendants. Methods A cross-sectional study was conducted to assess PM10 and TVOC concentrations at 20 systematically selected filling stations in Ibadan North Local Government Area, Ibadan for 2 months using a Thermo Scientific pDR 1500 PM10 monitor and SF2000-TVOC meter. FEV1 and PEFR levels were measured in order to assess the effect of exposure to PM10 and TVOC on lung function of 100 filling station attendants using a PIKO-1 Electronic peakflow/FEV1 meter. Results Total mean PM10 concentrations (μg/m3) in the morning (43.7±16.5) and afternoon (27.8±7.9) were significantly lower (p<0.01) than the World Health Organization (WHO) guideline limit (50 μg/m3). Total mean TVOC concentrations (ppm) in the morning (12.0±3.4) and afternoon (5.6±2.4) were however significantly higher (p<0.01) than the Occupational Safety and Health Administration (OSHA) guideline limit (3 ppm). Mean FEV1 for filling station attendants was 1.63±0.39 and PEFR was 171.7±45.9. Conclusion Filling stations are hotspots for the emission of VOCs and PM10. However, filling station attendants in this study are at risk of exposure to high concentrations of VOCs but not PM10. FEV1 and PEFR values among filling station attendants were very low which could possibly be attributed to extended exposure to air pollutants. Regular medical examinations should also be conducted on filling station attendants in order to aid early detection of deviations in their health status.

2016 ◽  
Vol 49 (1) ◽  
pp. 1600206 ◽  
Author(s):  
Meriem Benmerad ◽  
Rémy Slama ◽  
Karine Botturi ◽  
Johanna Claustre ◽  
Antoine Roux ◽  
...  

An irreversible loss in lung function limits the long-term success in lung transplantation. We evaluated the role of chronic exposure to ambient air pollution on lung function levels in lung transplant recipients (LTRs).The lung function of 520 LTRs from the Cohort in Lung Transplantation (COLT) study was measured every 6 months. The levels of air pollutants (nitrogen dioxide (NO2), particulate matter with an aerodynamic cut-off diameter of x µm (PMx) and ozone (O3)) at the patients' home address were averaged in the 12 months before each spirometry test. The effects of air pollutants on forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) in % predicted were estimated using mixed linear regressions. We assessed the effect modification of macrolide antibiotics in this relationship.Increased 12-month levels of pollutants were associated with lower levels of FVC % pred (−2.56%, 95% CI −3.86–−1.25 for 5 µg·m−3of PM10; −0.75%, 95% CI −1.38–−0.12 for 2 µg·m−3of PM2.5and −2.58%, 95% CI −4.63–−0.53 for 10 µg·m−3of NO2). In patients not taking macrolides, the deleterious association between PM and FVC tended to be stronger and PM10was associated with lower FEV1.Our study suggests a deleterious effect of chronic exposure to air pollutants on lung function levels in LTRs, which might be modified with macrolides.


2019 ◽  
Vol 54 (1) ◽  
pp. 1802140 ◽  
Author(s):  
Dany Doiron ◽  
Kees de Hoogh ◽  
Nicole Probst-Hensch ◽  
Isabel Fortier ◽  
Yutong Cai ◽  
...  

Ambient air pollution increases the risk of respiratory mortality, but evidence for impacts on lung function and chronic obstructive pulmonary disease (COPD) is less well established. The aim was to evaluate whether ambient air pollution is associated with lung function and COPD, and explore potential vulnerability factors.We used UK Biobank data on 303 887 individuals aged 40–69 years, with complete covariate data and valid lung function measures. Cross-sectional analyses examined associations of land use regression-based estimates of particulate matter (particles with a 50% cut-off aerodynamic diameter of 2.5 and 10 µm: PM2.5 and PM10, respectively; and coarse particles with diameter between 2.5 μm and 10 μm: PMcoarse) and nitrogen dioxide (NO2) concentrations with forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), the FEV1/FVC ratio and COPD (FEV1/FVC <lower limit of normal). Effect modification was investigated for sex, age, obesity, smoking status, household income, asthma status and occupations previously linked to COPD.Higher exposures to each pollutant were significantly associated with lower lung function. A 5 µg·m−3 increase in PM2.5 concentration was associated with lower FEV1 (−83.13 mL, 95% CI −92.50– −73.75 mL) and FVC (−62.62 mL, 95% CI −73.91– −51.32 mL). COPD prevalence was associated with higher concentrations of PM2.5 (OR 1.52, 95% CI 1.42–1.62, per 5 µg·m−3), PM10 (OR 1.08, 95% CI 1.00–1.16, per 5 µg·m−3) and NO2 (OR 1.12, 95% CI 1.10–1.14, per 10 µg·m−3), but not with PMcoarse. Stronger lung function associations were seen for males, individuals from lower income households, and “at-risk” occupations, and higher COPD associations were seen for obese, lower income, and non-asthmatic participants.Ambient air pollution was associated with lower lung function and increased COPD prevalence in this large study.


Author(s):  
Dirk Keidel ◽  
Josep Maria Anto ◽  
Xavier Basagaña ◽  
Roberto Bono ◽  
Emilie Burte ◽  
...  

Ambient air pollution is a leading environmental risk factor and its broad spectrum of adverse health effects includes a decrease in lung function. Socioeconomic status (SES) is known to be associated with both air pollution exposure and respiratory function. This study assesses the role of SES either as confounder or effect modifier of the association between ambient air pollution and lung function. Cross-sectional data from three European multicenter adult cohorts were pooled to assess factors associated with lung function, including annual means of home outdoor NO2. Pre-bronchodilator lung function was measured according to the ATS-criteria. Multiple mixed linear models with random intercepts for study areas were used. Three different factors (education, occupation and neighborhood unemployment rate) were considered to represent SES. NO2 exposure was negatively associated with lung function. Occupation and neighborhood unemployment rates were not associated with lung function. However, the inclusion of the SES-variable education improved the models and the air pollution-lung function associations got slightly stronger. NO2 associations with lung function were not substantially modified by SES-variables. In this multicenter European study we could show that SES plays a role as a confounder in the association of ambient NO2 exposure with lung function.


2021 ◽  
Vol 10 (11) ◽  
pp. 2375
Author(s):  
Piotr Dąbrowiecki ◽  
Łukasz Adamkiewicz ◽  
Dominika Mucha ◽  
Piotr Oskar Czechowski ◽  
Mateusz Soliński ◽  
...  

Ambient air pollution impairs lung development in children, particularly in industrialized areas. The air quality in Zabrze, a city located in the Upper Silesian Industrial Region of Poland, is among the worst in Europe. We compared lung function and the frequency of respiratory or allergic symptoms between children living in Zabrze and those living in Gdynia, a city on the Baltic coast, which has the best long-term air quality in Poland. We enrolled children aged 9–15 years from both cities who were able to perform a spirometry. The following spirometry variables were measured for all participants: forced vital capacity (FVC), forced expiratory volume during the first second of expiration (FEV1), FEV1/FVC index, and peak expiratory flow (PEF). The frequencies of respiratory or allergic symptoms were taken from a survey completed by the participants’ parents. In total, 258 children from Gdynia and 512 children from Zabrze were examined. The mean values of FVC, FEV1, and PEF were significantly greater among children in Gdynia than those reported in Zabrze (p ≤ 0.032), and the frequencies of seasonal rhinorrhea (p = 0.015) or coughing episodes (p = 0.022) were significantly higher in Zabrze than in Gdynia. In conclusion, lung function was significantly impaired in children living in Zabrze, an area which is associated with poor air quality. Strategies to improve air quality in the Silesia region are urgently needed.


2018 ◽  
Vol 20 (3) ◽  
pp. 439-448

<p>Over the last few decades, the evidence on the adverse effects on the health of air pollution has been raised. Mortality is the most important health effect of ambient air pollution. We studied the relation between mortality and criteria pollutant air in Tehran, one of the highly industrialized, densely populated area and most polluted cities of the reign, during 2005-2014. For this purpose, we applied the approach proposed by the World Health Organization using the AirQ 2.2.3 model. Hourly concentrations of pollutants were taken from the Tehran environmental protection agency and Air Quality Control Company. In this model, the attributable proportion of health outcome, the annual number of excess cases of mortality for all causes were estimated. According to results, the number of total mortality caused by exposure to O3, NO2, SO2, PM10, PM2.5 in the past decade was 8042, 15141, 8136, 17776 and 20015 cases, respectively. The number of cumulative total mortality was 53110 cases in ten years. Furthermore, the number of cumulative cardiovascular and respiratory mortality 33887 and 8168 cases was estimated in last decade. A large number of residents of Tehran have died as a result of exposure to air pollutants; therefore for control and management of air pollution, appropriate actions on health and the environment should be performed.</p>


2014 ◽  
Vol 45 (1) ◽  
pp. 38-50 ◽  
Author(s):  
Martin Adam ◽  
Tamara Schikowski ◽  
Anne Elie Carsin ◽  
Yutong Cai ◽  
Benedicte Jacquemin ◽  
...  

The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE).Residential exposure to nitrogen oxides (NO2, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis.We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 μg·m−3 increase in NO2 exposure was associated with lower levels of FEV1 (−14.0 mL, 95% CI −25.8 to −2.1) and FVC (−14.9 mL, 95% CI −28.7 to −1.1). An increase of 10 μg·m−3 in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV1 (−44.6 mL, 95% CI −85.4 to −3.8) and FVC (−59.0 mL, 95% CI −112.3 to −5.6). The associations were particularly strong in obese persons.This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe.


2020 ◽  
Vol 7 (1) ◽  
pp. e000684
Author(s):  
Mona Elbarbary ◽  
Artem Oganesyan ◽  
Trenton Honda ◽  
Patrick Kelly ◽  
Ying Zhang ◽  
...  

BackgroundLong-term exposure to ambient air pollution leads to respiratory morbidity and mortality; however, the evidence of the effect on lung function and chronic obstructive pulmonary disease (COPD) in older adult populations is inconsistent.ObjectiveTo address this knowledge gap, we investigated the associations between particulate matter (PM), nitrogen dioxide (NO2) exposure and lung function, as well as COPD prevalence, in older Chinese adults.MethodsWe used data from the WHO Study on global AGEing and adult health (SAGE) China Wave 1, which includes 11, 693 participants from 64 townships in China. A cross-sectional analysis explored the association between satellite-based air pollution exposure estimates (PM with an aerodynamic diameter of ≤10 µm [PM10], ≤2.5 µm [PM2.5] and NO2) and forced expiratory volume in one second (FEV1), forced vital capacity (FVC), the FEV1/FVC ratio and COPD (defined as post-bronchodilator FEV1/FVC <70%). Data on lung function changes were further stratified by COPD status.ResultsHigher exposure to each pollutant was associated with lower lung function. An IQR (26.1 µg/m3) increase in PM2.5 was associated with lower FEV1 (−71.88 mL, 95% CI –92.13 to –51.64) and FEV1/FVC (−2.81, 95% CI −3.37 to –2.25). For NO2, an IQR increment of 26.8 µg/m3 was associated with decreases in FEV1 (−60.12 mL, 95% CI –84.00 to –36.23) and FVC (−32.33 mL, 95% CI –56.35 to –8.32). A 31.2 µg/m3 IQR increase in PM10 was linked to reduced FEV1 (−8.86 mL, 95% CI −5.40 to 23.11) and FEV1/FVC (−1.85, 95% CI −2.24 to –1.46). These associations were stronger for participants with COPD. Also, COPD prevalence was linked to higher levels of PM2.5 (POR 1.35, 95% CI 1.26 to 1.43), PM10 (POR 1.24, 95% CI 1.18 to 1.29) and NO2 (POR 1.04, 95% CI 0.98 to 1.11).ConclusionAmbient air pollution was associated with lower lung function, especially in individuals with COPD, and increased COPD prevalence in older Chinese adults.


2020 ◽  
Vol 32 (4) ◽  
pp. 699-704
Author(s):  
Pawan Kumar ◽  
Sonisha Gupta ◽  
Smita Asthana

Background: There is increasing concern of ambient air pollution as a global threat to humans. The most prominent effect of air pollution is on lung function. The air pollution causes decline in lung function amongst high exposure populations. There are some most vulnerable groups who are chronically exposed to ambient air pollution like traffic policemen, roadside hawkers, Banjara community in India, E-Rickshaw drivers etc. Methods: A cross sectional study was conducted in East Delhi, India. Spirometry was done for roadside hawkers having high exposure to ambient Air pollution and   working daily for 6-8 hours for the last more than 3 years. The low exposure group was taken from personnel working inside offices. The spirometry parameters of both the groups were compared. Student ‘T’ test was applied for statistical analysis with the help of SPSS software. Results: Comparison of FVC, FEV1 and FEV1/FVC ratio among two groups revealed lower values for the high exposure group which was statistically significant. Among high exposure group the mixed pattern of ventilation defect was observed. Among low exposure group normal pattern of lung function was observed. Conclusion: Roadside hawkers are a vulnerable group to ambient air pollution resulting in their lower values of lung function parameters with resultant mixed ventilator defect and consequently high risk for development of respiratory diseases in the future.


Sign in / Sign up

Export Citation Format

Share Document