scholarly journals Exploration for limestone deposit at Onigbedu, South–Western Nigeria

2016 ◽  
Vol 63 (3) ◽  
pp. 139-150
Author(s):  
Kayode F. Oyedele ◽  
Sunday Oladele ◽  
Charles A. Emakpor

Abstract The Onigbedu limestone deposit was investigated using the aeromagnetic data, resistivity soundings and borings with the aim of characterizing the limestone deposit and estimating its reserves. The subsurface structural features and depth to basement were identified with the analysis of aeromagnetic data. Twenty nine boreholes were drilled for subsurface appraisal and correlation of the limestone deposit. Eighty nine Vertical Electrical Sounding (VES) were acquired using the Schlumberger array. The results showed NE-SW trending lineaments that segmented the limestone. Depth to basement varied from 144.2 m to 1090 m. The VES results showed four to six layers indicating the topsoil (7-315 Ωm), clay (2-25 Ωm), shale (6-31 Ωm), limestone (20-223 Ωm), sandstone (>200 Ωm) and sandy materials. The VES results correlated well with the lithological unit delineated from the borehole. The overburden thickness ranged from 3.3 m to 28 m, while the limestone thickness varies between 18.1 m and 48.3 m. The limestone reserve was estimated at 1.9 × 109 t. This study concluded that the study area had vast occurrence of the limestone deposits, which would be of economic importance, if exploited.

2021 ◽  
Author(s):  
'Muyiwa Adekunle Adeyanju ◽  
Oluwaseun Victoria Fatoye ◽  
O.E Oyanameh

Abstract The study aims to integrate magnetic and vertical electrical sounding (VES) resistivity methods to determine groundwater prospective in part of Aran-orin Sheet 224. A total of three traverses were established in the study area for the vertical electrical sounding using the Schlumberger electrode configuration. A total of 17 VES points was established using the ABEM Terrameter SAS 1000C model with maximum half-current electrode spacing (AB/2) of 120m. A total of eight traverses were established for the magnetics survey with station intervals of 10 m and inter-profile spacing of 100 m. The magnetic and VES data were qualitatively and quantitatively interpreted using IPI2WIN and OASIS MONTAJ package respectively. The geo-electric sections reveal a maximum of 3-4 layers beneath the sub-surface an overburden thickness ranges from 8.2 m to 64.9 m and the corresponding lithology inferred are topsoil, weathered Rock, fractured basement and fresh basement. The depth to basement using half-width method showed that the depth ranges from 8.4-56.04 m, which corresponds with the electrical survey.


2020 ◽  
Vol 24 (7) ◽  
pp. 1209-1215
Author(s):  
A.S. Salami ◽  
E.M. Babafemi

Electrical resistivity methods using dipole-dipole and Schlumberger configurations of Vertical Electrical Sounding (VES) were carried out to evaluate the near-surface structural and lithological features suitable for groundwater development in parts of Igarra, Southwestern Nigeria. Two profiles with lengths of greater than 350m were carried out. A total of fifteen sounding locations along the profile lines were occupied. Dipole-dipole data were interpreted using DiprofWin software while interpretation of the VES data followed two stages of qualitative and quantitative data  interpretation using Resist software. Dipole-dipole interpretation results indicate the occurrence of local fractures while VES interpretation results reveal the typical basement rock profile ranging from topsoil, lateritic sand, weathered front, fractured to fresh basement. The significant variations in terms of persistence and thicknesses of these basement vertical rock profiles were revealed by the geoelectrical correlation panels, which indicate typical basement inhomogeneities over short distances. The local structural domains, the weathered front (where thick) and the fractured basement are demonstrably potential sources of groundwater, at least for domestic and small scale enterprises in this part of Igarra. Keywords: 2-D Pseudosection, Dipole-dipole, Fracture Basement, Vertical Electrical Sounding


Author(s):  
Adebo A. Babatunde ◽  
Ilugbo Stephen Olubusola ◽  
Oladetan Folorunso Emmanuel

A geoelectric investigation of groundwater prospect at Omitogun Estate, along Benin/Ilesha express way Akure, within the basement complex of southwestern Nigeria was carried out with a view to providing information on the geoelectric characteristic of the subsurface sequence, bedrock topography, subsurface structural features and their hydrogeologic significance, in order to identify aquifer units and determine possible areas for groundwater potential zones. The study involved the use of Schlumberger vertical electrical sounding data at thirty (30) stations. The vertical electrical sounding data presented as field curves were interpreted quantitatively by partial curve matching method and computer iteration technique. Fracture resistivity map, aquifer resistivity map, aquifer thickness map and overburden thickness map were generated from the results. Groundwater potential map was also generated from the integration of these maps using multi-criteria decision analysis (MCDA). The study area has been classified into low, medium, high groundwater potential zones and the results from well data across the entire study area were used to validate the accuracy of the groundwater potential map. From the results obtained, it could be concluded that the study area is generalized to be of low groundwater potential.  


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Akindeji O Fajana ◽  
Oluseun A Sanuade ◽  
Omolade T Olawunmi ◽  
Ajibola R Oyebamiji

This study compared the interpretation results of the Vertical Electrical Sounding (VES) data acquired using the conventional Schlumberger and modified Schlumberger arrays with a view to assessing the effectiveness of the modified Schlumberger arrays of VES as alternatives to the conventional Schlumberger array at sites with space constraint during geophysical exploration. A total of thirty (30) VES data for both conventional Schlumberger and modified Schlumberger arrays were collected across different rock units within Federal University Oye-Ekiti campus and Irare estate in Oye-Ekiti metropolis, south-western Nigeria, with electrode spacing (


2021 ◽  
Author(s):  
Oluwaseun Victoria Fatoye ◽  
O. E Oyanameh

Abstract This study aims at integration of magnetic and vertical electrical sounding (VES) resistivity methods to determine groundwater prospective in part of Aran-orin Sheet 224. A total of three traverses were established in the study area for the vertical electrical sounding using the Schlumberger electrode configuration. A total of 17 VES points was established using the ABEM Terrameter SAS 1000C model with maximum half-current electrode spacing (AB/2) of 120m. A total of eight traverses were established for the magnetics survey with station intervals of 10 m and inter-profile spacing of 100 m. The magnetic and VES data were qualitatively and quantitatively interpreted using IPI2WIN and OASIS MONTAJ package respectively. The geo-electric sections reveal a maximum of 3–4 layers beneath the sub-surface an overburden thickness ranges from 8.2 m to 64.9 m and the corresponding lithology inferred are topsoil, weathered Rock, fractured basement and fresh basement. The depth to basement using half-width method showed that the depth ranges from 8.4-56.04 m, which corresponds with the electrical survey.


2021 ◽  
Author(s):  
Oluwaseun Victoria Fatoye ◽  
'Muyiwa Adekunle Adeyanju ◽  
O.E Oyanameh

Abstract The study aims to integrate magnetic and vertical electrical sounding (VES) resistivity methods to determine groundwater prospective in part of Aran-orin Sheet 224. A total of three traverses were established in the study area for the vertical electrical sounding using the Schlumberger electrode configuration. A total of 17 VES points was established using the ABEM Terrameter SAS 1000C model with maximum half-current electrode spacing (AB/2) of 120m. A total of eight traverses were established for the magnetics survey with station intervals of 10 m and inter-profile spacing of 100 m. The magnetic and VES data were qualitatively and quantitatively interpreted using IPI2WIN and OASIS MONTAJ package respectively. The geo-electric sections reveal a maximum of 3-4 layers beneath the sub-surface an overburden thickness ranges from 8.2 m to 64.9 m and the corresponding lithology inferred are topsoil, weathered Rock, fractured basement and fresh basement. The depth to basement using half-width method showed that the depth ranges from 8.4-56.04 m, which corresponds with the electrical survey.


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Olayiwola G Olaseeni ◽  
Ajibola Oyebamiji ◽  
Oluwaseun Olaoye ◽  
Bosede Ojo ◽  
Ayokunle Akinlalu

This study aimed at evaluating the potential for groundwater development in the eastern part of Ado-Ekiti, Southwestern Nigeria using Vertical Electrical Sounding (VES). Data were acquired with ABEM SAS 300 and processed through partial curve matching techniques and assisted with 1-D forward modelling. Geoelectric parameters were determined from the VES interpreted result. Seven (7) different VES type curves (H, A, HA, KH, HK, QH and HKH) indicating inhomogeneity of the subsurface layer beneath the study area were observed. Weathered layer resistivity map having values ranging from 3.2 – 272 Ωm, overburden thickness of value vary between 0 and 28m and  bedrock relief values range from 360 – 480 m were delineated. It was estimated from the result that the northwestern and southeastern part which constituted about 15%of the study area possess high groundwater potential while the remaining 85% of the study area exhibit low/moderate potentials for yielding substantial water. Hence, the groundwater potential rating of the area was considered generally low.Keywords- Geoelectric, Groundwater potential, Overburden thickness, Vertical Electrical Sounding


2015 ◽  
Vol 2015 ◽  
pp. 1-24 ◽  
Author(s):  
Micheal Oladunjoye ◽  
Solomon Jekayinfa

This research compared the interpretation results of the Vertical Electrical Sounding data acquired using the conventional Schlumberger and modified Schlumberger arrays with a view to assessing the effectiveness of the modified Schlumberger arrays of vertical electrical sounding as an alternative to the conventional Schlumberger array at sites with space constraint during groundwater exploration. A total of thirty-seven (37) sounding locations were occupied and one hundred (100) sounding data for both conventional Schlumberger and modified Schlumberger arrays were collected across different rock units within Ibadan metropolis, south-western Nigeria, with electrode spacing (AB/2) ranging from 1 to 75 m. The field data were interpreted qualitatively by curve matching and computer iterative methods. Also, statistical analysis of subsurface units and the coefficient of correlation “R” of the statistical plots of the field data shows the relationship between the different arrays. The raw data plot of the different arrays shows significant similarities while statistical analysis of the geo-electric parameters obtained from the different arrays across varied lithologic units show that strong relationships exist between the different field methods. The coefficient of correlationRwith values ranging from 0.7 to 0.99 implies that a good similarity exists between the different field methods employed in this study. Hence, modified Schlumberger arrays can be said to be a good alternative to the conventional Schlumberger array for groundwater exploration especially in urban settings where space constraint is a major challenge.


Sign in / Sign up

Export Citation Format

Share Document