scholarly journals Buckling analysis of thin-walled metal liner of cylindrical composite overwrapped pressure vessels with depressions after autofrettage processing

2021 ◽  
Vol 28 (1) ◽  
pp. 540-554
Author(s):  
Guo Zhang ◽  
Haiyang Zhu ◽  
Qi Wang ◽  
Xiaowen Zhang ◽  
Mingfa Ren ◽  
...  

Abstract The cylindrical filament wound composite overwrapped pressure vessels (COPV) with metal liner has been widely used in spaceflight due to their high strength and low weight. After the autofrettage process, the plastic deformation of the metal liner is constrained by composite winding layers, which introduce depressions to the metal liner that causes local buckling. To predict the local buckling of the inner liner with depressions of the pressure vessel after the autofrettage process, a local buckling analysis method for the metal liner of COPV was developed in this article. The finite element method is used to calculate the overall stress distribution in the pressure vessel before and after the autofrettage process, and the influence of local depressions on the buckling is evaluated. The axial buckling of the pressure vessel under external pressure is analyzed. The control equation of the metal liner with depressions is developed, considering the changes in the pressure and the bending moment of the liner depressions and its vicinity during the loading and unloading process. Taking the cylindrical COPV (38 L) with aluminum alloy liner as an example, the effects of liner thickness, liner radius, the thickness-to-diameter ratio, autofrettage pressure, and the length of straight section on the autofrettage process are discussed. The results show that the thickness of the inner liner has the most significant influence on the buckling of the liner, followed by the length of the straight section and the radius of the inner liner, while the autofrettage pressure has the least influence.

1970 ◽  
Vol 92 (1) ◽  
pp. 11-16 ◽  
Author(s):  
J. M. Barsom ◽  
S. T. Rolfe

Increasing use of high-strength steels in pressure-vessel design has resulted from emphasis on decreasing the weight of pressure vessels for certain applications. To demonstrate the suitability of a 140-ksi yield strength steel for use in unwelded pressure vessels, HY-140(T)—a quenched and tempered 5Ni-Cr-Mo-V steel—was fabricated and subjected to various burst and fatigue tests, as well as to various laboratory tests. In general, results of the investigation indicated very good tensile, Charpy, Nil Ductility Transition Temperature (NDT), low-cycle fatigue, and stress-corrosion properties of HY-140(T) steels, as well as very good burst tests results, in comparison with existing high-yield strength pressure-vessel steels. The results also indicate that the HY-140(T) steel should be an excellent material for its originally designed purpose, Naval hull applications.


2006 ◽  
Vol 129 (1) ◽  
pp. 155-161 ◽  
Author(s):  
Milan Veljkovic ◽  
Jonas Gozzi

Pressure vessels have been used for a long time in various applications in oil, chemical, nuclear, and power industries. Although high-strength steels have been available in the last three decades, there are still some provisions in design codes that preclude a full exploitation of its properties. This was recognized by the European Equipment Industry and an initiative to improve economy and safe use of high-strength steels in the pressure vessel design was expressed in the evaluation report (Szusdziara, S., and McAllista, S., EPERC Report No. (97)005, Nov. 11, 1997). Duplex stainless steel (DSS) has a mixed structure which consists of ferrite and austenite stainless steels, with austenite between 40% and 60%. The current version of the European standard for unfired pressure vessels EN 13445:2002 contains an innovative design procedure based on Finite Element Analysis (FEA), called Design by Analysis-Direct Route (DBA-DR). According to EN 13445:2002 duplex stainless steels should be designed as a ferritic stainless steels. Such statement seems to penalize the DSS grades for the use in unfired pressure vessels (Bocquet, P., and Hukelmann, F., 2001, EPERC Bulletin, No. 5). The aim of this paper is to present an investigation performed by Luleå University of Technology within the ECOPRESS project (2000-2003) (http://www.ecopress.org), indicating possibilities towards economic design of pressure vessels made of the EN 1.4462, designation according to the European standard EN 10088-1 Stainless steels. The results show that FEA with von Mises yield criterion and isotropic hardening describe the material behaviour with a good agreement compared to tests and that 5% principal strain limit is too low and 12% is more appropriate.


1986 ◽  
Vol 108 (4) ◽  
pp. 526-529
Author(s):  
A. E. Blach

Half-pipe heating channels are used on the outside of pressure vessels such as agitators, mixers, reactors, etc., to avoid the high external pressure associated with heating jackets. No applicable method of analysis is contained in the ASME Code and proof tests are normally required for registration with governing authorities. An analytical method is presented which permits the evaluation of stresses in shell and half pipe; numerical examples are included.


2020 ◽  
Vol 77 ◽  
pp. 103266 ◽  
Author(s):  
Yi Shuai ◽  
Dao-Chuan Zhou ◽  
Xin-Hua Wang ◽  
Heng-Gang Yin ◽  
Shidong Zhu ◽  
...  

Author(s):  
Erik Levold ◽  
Andrea Restelli ◽  
Lorenzo Marchionni ◽  
Caterina Molinari ◽  
Luigino Vitali

Considering the future development for offshore pipelines, moving towards difficult operating condition and deep/ultra-deep water applications, there is the need to understand the failure mechanisms and better quantify the strength and deformation capacity of corroded pipelines considering the relevant failure modes (collapse, local buckling under internal and external pressure, fracture / plastic collapse etc.). A Joint Industry Project sponsored by ENI E&P and Statoil has been launched with the objective to quantify and assess the strength and deformation capacity of corroded pipes in presence of internal overpressure and axial/bending loading. In this paper: • The State-of-the-Art on strength and deformation capacity of corroded pipes is presented; • The full-scale laboratory tests on corroded pipes under bending moment dominated load conditions, performed at C-FER facilities, are shown together with the calibrated ABAQUS FE Model; • The results of the ABAQUS FEM parametric study are presented.


2013 ◽  
Vol 331 ◽  
pp. 184-188
Author(s):  
Dong Xia Liu ◽  
Li Liang ◽  
Xing Lei Bao

For the pressure vessels made of high-strength Carbon Fiber Reinforced Plastics (CFRP) and Aluminum liner, the strength is provided by the CFRP, but the liner leak is always the bottleneck of the vessels’ safety. The carrying capacity and anti-fatigue ability of CFRP pressure vessels is largely depend on the elastic deformation range. In this research the principle of autofrettage is analyzed, the mechanical character of a certain 2 liters pressure vessel is analyzed using finite element software ANSYS, and the optimal autofrettage pressure is calculated by optimization method. The results showed that the stresses of the liner under working pressure were decreasing while applying the autofrettage pressure. The liner would gain the best plastic level under the appropriate autofrettage pressure.


Author(s):  
Yoichi Ishizaki ◽  
Futoshi Yonekawa ◽  
Takeaki Yumoto ◽  
Teppei Suzuki ◽  
Shuji Hijikawa

As widely recognized in the industry, it is important to evaluate the creep damage of an elevated temperature vessel so that the mechanical integrity of the vessel can be achieved through the adequate repair and replacement planning. This is quite straight forward procedure for internal pressure vessels. For an external pressure vessel, it is not easy to assess the creep damage due to the complexity of the creep buckling analysis. Eventually, creep cavity evaluation technique without identifying the correct stress distribution has been used so often. However, due to the uncertainty of the technique itself plus conservative mindset of the inspectors, it tends to leads to an excessive maintenance most of the cases. In order to conduct a reasonable remaining life assessment, it is desirable to use the creep cavity inspection in conjunction with another assessment technique such as FEM creep analysis as stated in API 579-1/ASME FFS-1 10.5.7. In this paper, comprehensive approach with FEM and field inspection such as creep cavity evaluation to reinforce the uncertainty of each method will be demonstrated.


Author(s):  
J. Sakai ◽  
Y. H. Park

Abstract Anisotropic composite cylinders and pressure vessels have been widely employed in automotive, aerospace, chemical and other engineering areas due to high strength/stiffness-to-weight ratio, exceptional corrosion resistance, and superb thermal performance. Pipes, fuel tanks, chemical containers, rocket motor cases and aircraft and ship elements are a few examples of structural application of fiber reinforced composites (FRCs) for pressure vessels/pipes. Since the performance of composite materials replies on the tensile and compressive strengths of the fiber directions, the optimum design of composite laminates with varying fiber orientations is desired to minimize the damage of the structure. In this study, a complete mathematical 3D elasticity solution was developed, which can accurately compute stresses of a thick multilayered anisotropic fiber reinforced pressure vessel under force and pressure loadings. A rotational variable is introduced in the formalism to treat torsional loading in addition to force and pressure loadings. Then, the three-dimensional Tsai-Wu criterion is used based on the analytical solution to predict the failure. Finally, a global optimization algorithm is used to find the optimum fiber orientation and their best combination through the thickness direction.


Author(s):  
Martin Muscat ◽  
Duncan Camilleri ◽  
Brian Ellul

The increase in stiffness to weight ratio and relative ease of manufacturing fibre reinforced composite pressure vessels, have put such vessels at the forefront of technology. However only limited research and specific codes pertaining exclusively to composite pressure vessel design can be found in literature. The ASME Boiler and Pressure Vessel (BPVC) Section X Code and the European design codes EN 13121-3:2016 (GRP tanks and vessels for use above ground) together with EN 13923:2005 (Filament wound FRP pressure vessels — materials, design, manufacturing and testing) are some of the few known design codes applicable to composite pressure vessels. These codes utilise both design by rule (DBR) and design by analysis (DBA) methods. The authors believe that more studies along the DBA route would benefit the composite pressure vessel design community and make it more accessible to designers and engineers. A similar scenario has already been seen in the last 10 to 15 years for steel pressure vessel design codes when DBA based on inelastic analysis was introduced. In line with these thoughts, this study compares the different design methods to prevent buckling and applies finite element analysis (FEA) to analyse a hemispherical GFRP pressure vessel head subjected to external pressure. The effect of material damage and geometrical imperfections on the final collapse failure is examined and discussed.


Sign in / Sign up

Export Citation Format

Share Document