straight section
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 20)

H-INDEX

12
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Abdelrahman Essa ◽  
Buddhika Abeyrathna ◽  
Bernard Rolfe ◽  
Matthias Weiss

Abstract Flexible Roll Forming (FRF) allows the forming of components with a variable cross-section along the length of the component. However, the process has only limited application in the automotive industry due to wrinkling in the flange which currently prevents the forming of high strength steels and limits the part shape complexity. This paper presents a new forming technology, Incremental Shape Rolling (ISR), where a pre-cut blank is clamped between two dies and then a single forming roll is used to incrementally form the material to the desired shape. The new process is similar to some Incremental Sheet Forming (ISF) approaches but with the difference that Incremental Shape Rolling (ISR) allows the manufacture of longitudinal components from high strength metal sheets. In this work, a numerical model of the ISR of a straight section is developed. Experimental prototyping trials are performed and are used to validate the numerical model which is then applied to analyse the new forming process. The results show that in ISR, tensile residual strains are developed in the flange. Flange wrinkling is observed and directly linked to the number of forming passes that are used in the process.


2022 ◽  
Vol 17 (01) ◽  
pp. P01001
Author(s):  
J. Xu ◽  
Z. Ren ◽  
P. Yang ◽  
G. Liu ◽  
Z. Bai

Abstract The Hefei Advanced Light Facility (HALF) is a soft X-ray diffraction-limited storage ring being designed with an energy of about 2.2 GeV and an emittance goal of less than 100 pm·rad. The present HALF lattice is a modified hybrid six-bend-achromat (6BA) lattice with a long and a short straight section in each cell. In this paper, a 7BA lattice is designed for HALF as a promising option, which follows the main feature of hybrid 7BA lattice, but to have a compact configuration and lower emittance, all bends in this lattice are combined-function bends and reverse bends. The designed HALF storage ring has a circumference of 388.8 m and 20 identical cells. Two solutions with different betatron tunes are studied for this lattice. One with smaller tunes has better nonlinear dynamics performance allowing for off-axis injection, which has a natural emittance of 67 pm·rad. The other with larger tunes has very small beta functions at the straight section as well as lower natural emittance of 59 pm·rad, which can enhance the brightness of insertion device (ID) radiation. The intra-beam scattering effect and ID radiation properties are also presented in this paper.


2021 ◽  
Vol 22 (15) ◽  
pp. 7860
Author(s):  
Francesco Valente ◽  
Antonio Scarano ◽  
Giovanna Murmura ◽  
Giuseppe Varvara ◽  
Bruna Sinjari ◽  
...  

The aim of this study was to analyse the influence of different thread shapes of titanium dental implant on the bone collagen fibre orientation (BCFO) around loaded implants. Twenty titanium dental implants, divided for thread shapes in six groups (A–F) were analysed in the present study. All implants were immediately loaded and left in function for 6 months before retrieval. The parameters evaluated under scanning electron microscope were the thread width, thread depth, top radius of curvature, flank angle, and the inter-thread straight section. Two undecalcified histological sections were prepared from each implant. Birefringence analysis using circularly polarized light microscopy was used to quantitively measure BCFO. For groups A–F, respectively, transverse BCFO was 32.7%, 24.1%, 22.3%, 18.2%, 32.4%, and 21.2%, longitudinal BCFO was 28.2%, 14.5%, 44.9%, 33.1%, 37.7%, and 40.2%. The percentage differences between transverse and longitudinal orientation were 4.50% (A), 9.60% (B), −22.60% (C), −14.90% (D), −5.30% (E), and −19.00% (F). Following loading, the amount of transverse and longitudinal BCFO were significantly influenced by the thread shape. The greater flank angles and narrower inter-thread sections of the “V” shaped and “concave” shaped implant threads of groups A and B, respectively, promoted the predominance of transverse BCFO, compared to groups C-F (p < 0.05). A narrow inter-thread straight section promotes transverse BCFO, as do “V” shaped and “concave” shaped threads, which can thus be considered desirable design for implant threads.


Author(s):  
Shenghao Wu ◽  
Jiming Chen ◽  
Qin Chen ◽  
Haitao Pei

Experimental studies were carried out in the 0.6 m×0.6 m continuous transonic wind tunnel of CARDC in order to investigate the flow characteristics of the slotted test section. Experimental results show that the root-mean-square deviation of axial Mach number in the model area is above 0.01 when the test section Mach number is above 1.0.Numerical simulation under the same conditions to investigate the flow characteristics of the slotted section, together with the experimental studies indicate tow phenomena may directly cause the Mach number fluctuation. Firstly, a straight section was installed to connect the nozzle and the test section in the wind tunnel. Weak shock waves due to the curvature discontinuity at the joint of the test section and the straight section contribute to Mach number fluctuation. Secondly, the open-area ratio of both the upper and lower wall of test section, each with 8 slots, is of 10%. The larger porosity leads to stronger expansion waves in the acceleration zone located at the inlet of the test section. The flow was over accelerated because of the stronger expansion wave and thus fluctuate the flow field severely. Two measures were taken to improve the flow quality of the slotted test section based on the above-mentioned analysis: ①Flexible plate instead of solid straight plate was installed to bridge nozzle and test section to eliminate the curvature discontinuity; ②Decreasing the open-area ratio of the upper and lower test section wall to 6% and the number of slots to 6. Numerical and experimental results show that the Mach number fluctuation in the model area was suppressed to a satisfactory degree.


2021 ◽  
Vol 63 (2) ◽  
pp. 172-179
Author(s):  
A. V. Subbotin

Abstract Using the numerical analysis of the force balance equation and the rheological equation of the model of finitely extensible chains, the dynamics of a charged jet during the electrospinning of a polymer solution and the orientation of macromolecules in the jet are studied. In fairly weak electric fields, the jet always remains rectilinear, while in strong fields the straight section of the jet has a finite length, after which the motion of the jet becomes unstable. This behavior is due to the competition between inertial and viscoelastic forces, with viscoelasticity dominating in strong fields. It is found that polymer chains in the jet are strongly stretched along the flow direction.


2021 ◽  
Vol 28 (1) ◽  
pp. 540-554
Author(s):  
Guo Zhang ◽  
Haiyang Zhu ◽  
Qi Wang ◽  
Xiaowen Zhang ◽  
Mingfa Ren ◽  
...  

Abstract The cylindrical filament wound composite overwrapped pressure vessels (COPV) with metal liner has been widely used in spaceflight due to their high strength and low weight. After the autofrettage process, the plastic deformation of the metal liner is constrained by composite winding layers, which introduce depressions to the metal liner that causes local buckling. To predict the local buckling of the inner liner with depressions of the pressure vessel after the autofrettage process, a local buckling analysis method for the metal liner of COPV was developed in this article. The finite element method is used to calculate the overall stress distribution in the pressure vessel before and after the autofrettage process, and the influence of local depressions on the buckling is evaluated. The axial buckling of the pressure vessel under external pressure is analyzed. The control equation of the metal liner with depressions is developed, considering the changes in the pressure and the bending moment of the liner depressions and its vicinity during the loading and unloading process. Taking the cylindrical COPV (38 L) with aluminum alloy liner as an example, the effects of liner thickness, liner radius, the thickness-to-diameter ratio, autofrettage pressure, and the length of straight section on the autofrettage process are discussed. The results show that the thickness of the inner liner has the most significant influence on the buckling of the liner, followed by the length of the straight section and the radius of the inner liner, while the autofrettage pressure has the least influence.


2021 ◽  
Vol 233 ◽  
pp. 04009
Author(s):  
Zhichao Yao ◽  
Dongxu Li ◽  
Shiyao Zhu ◽  
Lilin Zhou

The stretchable composite thin-walled lenticular boom can be used in the unfolding process of a large spacecraft structure, and its buckling characteristic is one of the focuses of structural design. In this paper, firstly, the critical buckling load formula is derived based on Euler’s formula and laminated theory for the axial compression buckling problem of the lenticular boom, and verified by the finite element method. Secondly, the influence law of the lenticular boom section and layer parameters on the critical buckling load is quantitatively analyzed. The results show that the lenticular boom generally undergoes first-order buckling in the outer direction of the symmetrical bonding surface. The critical buckling load is most significantly affected by the radius of the convex arc, followed by the center ordinate of the convex arc, the thickness of the layer, and the angle of the layer. And these parameters are positively related to the critical buckling load. The radius of the concave arc and the length of the straight section have little effect on the critical buckling load. The research methods and conclusions of this paper can provide reference for the engineering design of the lenticular boom structure.


Sign in / Sign up

Export Citation Format

Share Document