scholarly journals Partitions of networks that are robust to vertex permutation dynamics

2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Gary Froyland ◽  
Eric Kwok

AbstractMinimum disconnecting cuts of connected graphs provide fundamental information about the connectivity structure of the graph. Spectral methods are well-known as stable and efficient means of finding good solutions to the balanced minimum cut problem. In this paper we generalise the standard balanced bisection problem for static graphs to a new “dynamic balanced bisection problem”, in which the bisecting cut should be minimal when the vertex-labelled graph is subjected to a general sequence of vertex permutations. We extend the standard spectral method for partitioning static graphs, based on eigenvectors of the Laplacian matrix of the graph, by constructing a new dynamic Laplacian matrix, with eigenvectors that generate good solutions to the dynamic minimum cut problem. We formulate and prove a dynamic Cheeger inequality for graphs, and demonstrate the effectiveness of the dynamic Laplacian matrix for both structured and unstructured graphs.

2019 ◽  
Vol 17 (1) ◽  
pp. 1490-1502 ◽  
Author(s):  
Jia-Bao Liu ◽  
Muhammad Javaid ◽  
Mohsin Raza ◽  
Naeem Saleem

Abstract The second smallest eigenvalue of the Laplacian matrix of a graph (network) is called its algebraic connectivity which is used to diagnose Alzheimer’s disease, distinguish the group differences, measure the robustness, construct multiplex model, synchronize the stability, analyze the diffusion processes and find the connectivity of the graphs (networks). A connected graph containing two or three cycles is called a bicyclic graph if its number of edges is equal to its number of vertices plus one. In this paper, firstly the unique graph with a minimum algebraic connectivity is characterized in the class of connected graphs whose complements are bicyclic with exactly three cycles. Then, we find the unique graph of minimum algebraic connectivity in the class of connected graphs $\begin{array}{} {\it\Omega}^c_{n}={\it\Omega}^c_{1,n}\cup{\it\Omega}^c_{2,n}, \end{array}$ where $\begin{array}{} {\it\Omega}^c_{1,n} \end{array}$ and $\begin{array}{} {\it\Omega}^c_{2,n} \end{array}$ are classes of the connected graphs in which the complement of each graph of order n is a bicyclic graph with exactly two and three cycles, respectively.


2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
Brahim Chaourar

Given a graph G=V,E, a connected sides cut U,V\U or δU is the set of edges of E linking all vertices of U to all vertices of V\U such that the induced subgraphs GU and GV\U are connected. Given a positive weight function w defined on E, the maximum connected sides cut problem (MAX CS CUT) is to find a connected sides cut Ω such that wΩ is maximum. MAX CS CUT is NP-hard. In this paper, we give a linear time algorithm to solve MAX CS CUT for series parallel graphs. We deduce a linear time algorithm for the minimum cut problem in the same class of graphs without computing the maximum flow.


Algorithmica ◽  
1992 ◽  
Vol 7 (1-6) ◽  
pp. 499-519 ◽  
Author(s):  
Dan Gusfield ◽  
Charles Martel

2021 ◽  
Vol 40 (6) ◽  
pp. 1431-1448
Author(s):  
Ansderson Fernandes Novanta ◽  
Carla Silva Oliveira ◽  
Leonardo de Lima

Let G be a graph on n vertices. The Laplacian matrix of G, denoted by L(G), is defined as L(G) = D(G) −A(G), where A(G) is the adjacency matrix of G and D(G) is the diagonal matrix of the vertex degrees of G. A graph G is said to be L-integral if all eigenvalues of the matrix L(G) are integers. In this paper, we characterize all Lintegral non-bipartite graphs among all connected graphs with at most two vertices of degree larger than or equal to three.


1998 ◽  
Vol 80 (2) ◽  
pp. 213-237 ◽  
Author(s):  
G. Gallo ◽  
C. Gentile ◽  
D. Pretolani ◽  
G. Rago

2009 ◽  
Vol 22 (18) ◽  
pp. 4845-4859 ◽  
Author(s):  
Balachandrudu Narapusetty ◽  
Timothy DelSole ◽  
Michael K. Tippett

Abstract This paper shows theoretically and with examples that climatological means derived from spectral methods predict independent data with less error than climatological means derived from simple averaging. Herein, “spectral methods” indicates a least squares fit to a sum of a small number of sines and cosines that are periodic on annual or diurnal periods, and “simple averaging” refers to mean averages computed while holding the phase of the annual or diurnal cycle constant. The fact that spectral methods are superior to simple averaging can be understood as a straightforward consequence of overfitting, provided that one recognizes that simple averaging is a special case of the spectral method. To illustrate these results, the two methods are compared in the context of estimating the climatological mean of sea surface temperature (SST). Cross-validation experiments indicate that about four harmonics of the annual cycle are adequate, which requires estimation of nine independent parameters. In contrast, simple averaging of daily SST requires estimation of 366 parameters—one for each day of the year, which is a factor of 40 more parameters. Consistent with the greater number of parameters, simple averaging poorly predicts samples that were not included in the estimation of the climatological mean, compared to the spectral method. In addition to being more accurate, the spectral method also accommodates leap years and missing data simply, results in a greater degree of data compression, and automatically produces smooth time series.


2002 ◽  
Vol 2 (4) ◽  
pp. 199-218 ◽  
Author(s):  
Boris A. Zalesky

The network flow optimization approach is offered for restoration of gray-scale and color images corrupted by noise. The Ising models are used as a statistical background of the proposed method. We present the new multiresolution network flow minimum cut algorithm, which is especially efficient in identification of the maximum a posteriori (MAP) estimates of corrupted images. The algorithm is able to compute the MAP estimates of large-size images and can be used in a concurrent mode. We also consider the problem of integer minimization of two functions,U1(x)=λ∑i|yi−xi|+∑i,j  βi,j|xi−xj|andU2(x)=∑i λi (yi−xi)2+∑i,j  βi,j (xi−xj)2, with parametersλ,λi,βi,j>0and vectorsx=(x1,…,xn),y=(y1,…,yn)∈{0,…,L−1}n. Those functions constitute the energy ones for the Ising model of color and gray-scale images. In the caseL=2, they coincide, determining the energy function of the Ising model of binary images, and their minimization becomes equivalent to the network flow minimum cut problem. The efficient integer minimization ofU1(x),U2(x)by the network flow algorithms is described.


Sign in / Sign up

Export Citation Format

Share Document