Comparative analysis of XTT assay and xCELLigence system by measuring cytotoxicity of resveratrol in human cancer cell lines

2016 ◽  
Vol 41 (6) ◽  
Author(s):  
Harika Atmaca ◽  
Emir Bozkurt ◽  
Aslı Kısım ◽  
Rüçhan Uslu

AbstractObjective:In vitro preliminary oncological and translational studies are mainly based on evaluating the cytotoxic effects of a specific compound on cultured cells. Resveratrol is a commercially available compound which is originally isolated from the roots of white hellebore and later fromMethods:XTT end point assay and real-time cell based xCELLigence system were used to evaluate cytotoxicity. Cytotoxicity results were verified by monitoring cells under phase-contrast microscope which were treated with ICResults:Resveratrol decreased cell viability in a time- and concentration-dependent manner in all cancer cell lines when tested by both the XTT assay and xCELLigence system. Standard deviations of the xCELLigence data were found to be lower than the data from XTT assay.Conclusion:The data from this study strongly imply that xCELLigence system has higher precision, more enlightening and more reproducible than XTT end point assay.

Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2108 ◽  
Author(s):  
Chuanming Zhang ◽  
Xiaoyu Tan ◽  
Jian Feng ◽  
Ning Ding ◽  
Yongpeng Li ◽  
...  

To discover new antiproliferative agents with high efficacy and selectivity, a new series of 1-aryl-3-{4-[(pyridin-2-ylmethyl)thio]phenyl}urea derivatives (7a–7t) were designed, synthesized and evaluated for their antiproliferative activity against A549, HCT-116 and PC-3 cancer cell lines in vitro. Most of the target compounds demonstrated significant antiproliferative effects on all the selective cancer cell lines. Among them, the target compound, 1-[4-chloro-3-(trifluoromethyl)phenyl]-3-{4-{{[3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methyl}thio}phenyl}urea (7i) was identified to be the most active one against three cell lines, which was more potent than the positive control with an IC50 value of 1.53 ± 0.46, 1.11 ± 0.34 and 1.98 ± 1.27 μM, respectively. Further cellular mechanism studies confirmed that compound 7i could induce the apoptosis of A549 cells in a concentration-dependent manner and elucidated compound 7i arrests cell cycle at G1 phase by flow cytometry analysis. Herein, the studies suggested that the 1-aryl-3-{4-[(pyridin-2-ylmethyl)thio]phenyl}urea skeleton might be regarded as new chemotypes for designing effective antiproliferative agents.


Author(s):  
Mǎdǎlina NISTOR ◽  
Raluca GHIMAN ◽  
Huseyin AYVAZ ◽  
Dumitrița RUGINǍ ◽  
Diana MADA ◽  
...  

Red berries are important sources of bioactive compounds and they are known to provide unique health benefits. Lately, it has been proved that anthocyanins have health benefits against degenerative diseases such as cardiovascular disease, cancer or diabetes. Accordingly, the aim of this study was to characterize the anthocyanin content of anthocyanins pure extracts (APEs) obtained from raspberries (Rubus sp.) and mulberries (Morus sp.) and to evaluate their antiproliferative effect in vitro. Upon chromatographic analysis, three anthocyanins were identified in purified extracts of mulberries (M-APEs), with cyanidin-3-O-glucoside being more abundant. On the other hand, purified extracts of raspberries (R-APEs) contained 2 anthocyanins, both identified as cyanidin-derivatives. The in vitro test demonstrated that APEs decreased the proliferation on both HeLa and A2780 human cancer cell lines in a dose dependent manner, demonstrating that these two different berries are both rich sources of anthocyanins and are able to exert antiproliferative proprieties toward cervical and ovarian cancer.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2177
Author(s):  
Paola Oliva ◽  
Valentina Onnis ◽  
Elisa Balboni ◽  
Ernest Hamel ◽  
Francisco Estévez-Sarmiento ◽  
...  

Induction of apoptosis is a common chemotherapeutic mechanism to kill cancer cells The thiazole system has been reported over the past decades as a building block for the preparation of anticancer agents. A novel series of 2-arylalkylamino-4-amino-5-(3′,4′,5′-trimethoxybenzoyl)-thiazole derivatives designed as dual inhibitors of tubulin and cyclin-dependent kinases (CDKs) were synthesized and evaluated for their antiproliferative activity in vitro against two cancer cell lines and, for selected highly active compounds, for interactions with tubulin and cyclin-dependent kinases and for cell cycle and apoptosis effects. Structure-activity relationships were elucidated for various substituents at the 2-position of the thiazole skeleton. Among the synthesized compounds, the most active analogues were found to be the p-chlorobenzylamino derivative 8e as well as the p-chloro and p-methoxyphenethylamino analogues 8f and 8k, respectively, which inhibited the growth of U-937 and SK-MEL-1 cancer cell lines with IC50 values ranging from 5.7 to 12.2 μM. On U-937 cells, the tested compounds 8f and 8k induced apoptosis in a time and concentration dependent manner. These two latter molecules did not affect tubulin polymerization (IC50 > 20 μM) nor CDK activity at a single concentration of 10 μM, suggesting alternative targets than tubulin and CDK for the compounds.


2020 ◽  
Vol 20 (10) ◽  
pp. 1241-1249
Author(s):  
Hong-Chuan Liu ◽  
Li-Ming Qiao ◽  
Wei Zheng ◽  
Zhao-Bao Xiang ◽  
Hai-Sheng Chen ◽  
...  

Background: Rabdosia japonica has been historically used in China as a popular folk medicine for the treatment of cancer, hepatitis, and gastricism. Glaucocalyxin A (GLA), an ent-kaurene diterpene isolated from Rabdosia japonica, is one of the main active ingredients showing potent inhibitory effects against several types of tumor cells. To the best of our knowledge, studies regarding the structural modification and Structure- Activity Relations (SAR) of this compound have not yet been reported. Objective: The aim of this study was to discover more potent derivatives of GLA and investigate their SAR and cytotoxicity mechanisms. Methods: Novel 7-O- and 14-O-derivatives of GLA were synthesized by condensation of acids or acyl chloride. The anti-tumor activities of these derivatives against various human cancer cell lines were evaluated in vitro by MTT assays. Apoptosis assays of compound 17 (7,14-diacylation product) were performed on A549 and HL-60 cells by flow cytometry and TUNNEL. The acute toxicity of this compound was tested on mice, at the dose of 300mg per kg body weight. Results: Seventeen novel 7-O- and 14-O-derivatives of GLA (1-17) were synthesized. These compounds showed potent cytotoxicity against the tested cancer cell lines, and almost all of them were found to be more cytotoxic than GLA and oridonin. Of the synthesized derivatives, compound 17 presented the greatest cytotoxicity, with IC50 values of 0.26μM and 1.10μM in HL-60 and CCRF-CEM cells, respectively. Furthermore, this compound induced weak apoptosis of A549 cells but showed great potential in stimulating the apoptosis of HL- 60 cells. Acute toxicity assays indicated that compound 17 is relatively safer. Conclusion: The results reported herein indicate that the synthesized GLA derivatives exhibited greater cytotoxicity against leukemia cells than against other types of tumors. In particular, 7,14-diacylation product of GLA was found to be an effective anti-tumor agent. However, the cytotoxicity mechanism of this product in A549 cells is expected to be different than that in other tumor cell lines. Further research is needed to confirm this hypothesis.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3923
Author(s):  
Adel A.-H. Abdel-Rahman ◽  
Amira K. F. Shaban ◽  
Ibrahim F. Nassar ◽  
Dina S. EL-Kady ◽  
Nasser S. M. Ismail ◽  
...  

New pyridine, pyrazoloyridine, and furopyridine derivatives substituted with naphthyl and thienyl moieties were designed and synthesized starting from 6-(naphthalen-2-yl)-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3-carbonitrile (1). The chloro, methoxy, cholroacetoxy, imidazolyl, azide, and arylamino derivatives were prepared to obtain the pyridine-−C2 functionalized derivatives. The derived pyrazolpyridine-N-glycosides were synthesized via heterocyclization of the C2-thioxopyridine derivative followed by glycosylation using glucose and galactose. The furopyridine derivative 14 and the tricyclic pyrido[3′,2′:4,5]furo[3,2-d]pyrimidine 15 were prepared via heterocyclization of the ester derivative followed by a reaction with formamide. The newly synthesized compounds were evaluated for their ability to in vitro inhibit the CDK2 enzyme. In addition, the cytotoxicity of the compounds was tested against four different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549). The CDK2/cyclin A2 enzyme inhibitory results revealed that pyridone 1, 2-chloro-6-(naphthalen-2-yl)-4-(thiophen-2-yl)nicotinonitrile (4), 6-(naphthalen-2-yl)-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine (8), S-(3-cyano-6-(naphthaen-2-yl)-4-(thiophen-2-yl)pyridin-2-yl) 2-chloroethanethioate (11), and ethyl 3-amino-6-(naphthalen-2-yl)-4-(thiophen-2-yl)furo[2,3-b]pyridine-2-carboxylate (14) are among the most active inhibitors with IC50 values of 0.57, 0.24, 0.65, 0.50, and 0.93 µM, respectively, compared to roscovitine (IC50 0.394 μM). Most compounds showed significant inhibition on different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549) with IC50 ranges of 31.3–49.0, 19.3–55.5, 22.7–44.8, and 36.8–70.7 μM, respectively compared to doxorubicin (IC50 40.0, 64.8, 24.7 and 58.1 µM, respectively). Furthermore, a molecular docking study suggests that most of the target compounds have a similar binding mode as a reference compound in the active site of the CDK2 enzyme. The structural requirements controlling the CDK2 inhibitory activity were determined through the generation of a statistically significant 2D-QSAR model.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
B. Rabindran Jermy ◽  
Munther Alomari ◽  
Vijaya Ravinayagam ◽  
Sarah Ameen Almofty ◽  
Sultan Akhtar ◽  
...  

Abstract Multifunctional nanomaterials can be used for dual applications: drug delivery as well as in bioimaging. In current study, we investigated potential use of silica based supports; 3D cage type SiSBA-16 (S-16), monodispersed hydrophilic spherical silica (HYPS) and mesocellular foam (MSU-F) for cisplatin (Cp) delivery. To obtain magnetic resonance characteristics, 10 wt% iron oxide was loaded through enforced adsorption technique. For pH stimuli responsive release of Cp, 10 wt%SPIONs/S-16 was functionalized with 3-(Aminopropyl)triethoxysilane (A) and poly acrylic acid (PAA) termed as 10 wt%SPIONs/S-16-A-Cp and 10 wt%SPIONs/S-16-APAA-Cp. By TEM analysis, the average diameter of the SPIONs was found to range between 10–60 nm. VSM analysis showed saturation magnetization over S-16, HYPS and MSU-F were in the following order: 10 wt%SPIONs/HYPS (4.08 emug−1) > 10 wt%SPIONs /S-16 (2.39 emug−1) > 10 wt%SPIONs/MSU-F (0.23 emug−1). Cp release study using dialysis membrane in PBS solution over 10 wt%SPIONs/S-16 nanoformulations showed highest cumulative release (65%) than 10 wt%SPIONs/MSU-F-A-Cp (63%), 10 wt%SPIONs/HYPS-A-Cp (58%), and Cp-F127/S-16 (53%), respectively. 10 wt%SPIONs/S-16-A-Cp and 10 wt%SPIONs/S-16-APAA-Cp were evaluated for in vitro target anticancer efficiency in human cancer cell lines (colon cancer (HCT 116), cervical cancer (HeLa)) and normal cells (Human embryonic kidney cells (HEK293) using MTT and DAPI staining. 10 wt%SPIONs/S-16-A-Cp treated Hela and HCT116 cancerous cell lines showed significant control of cell growth, apoptotic activity and less cytotoxic effect as compared to Cp and 10 wt%SPIONs/S-16. Target specific Cp release in the cells shows that 10 wt%SPIONs/S-16-A-Cp can be easily upgraded for magnetic resonance imaging capability.


Author(s):  
Suguru Fukahori ◽  
Hirohisa Yano ◽  
Jun Akiba ◽  
Sachiko Ogasawara ◽  
Seiya Momosaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document