A Class of Energetically Rigid Gravitational Fields

1974 ◽  
Vol 29 (11) ◽  
pp. 1527-1530 ◽  
Author(s):  
H. Goenner

In Einstein's theory, the physics of gravitational fields is reflected by the geometry of the curved space-time manifold. One of the methods for a study of the geometrical properties of space-time consists in regarding it, locally, as embedded in a higher-dimensional flat space. In this paper, metrics admitting a 3-parameter group of motion are considered which form a generalization of spherically symmetric gravitational fields. A subclass of such metrics can be embedded into a five- dimensional flat space. It is shown that the second fundamental form governing the embedding can be expressed entirely by the energy-momentum tensor of matter and the cosmological constant. Such gravitational fields are called energetically rigid. As an application gravitating perfect fluids are discussed.

Author(s):  
Jean‐Pierre Luminet

This chapter notes that the twin paradox is the best-known thought experiment associated with Einstein's theory of relativity. An astronaut who makes a journey into space in a high-speed rocket will return home to find he has aged less than his twin who stayed on Earth. This result appears puzzling, as the homebody twin can be considered to have done the travelling with respect to the traveller. Hence, it is called a “paradox”. In fact, there is no contradiction, and the apparent paradox has a simple resolution in special relativity with infinite flat space. In general relativity (dealing with gravitational fields and curved space-time), or in a compact space such as the hypersphere or a multiply connected finite space, the paradox is more complicated, but its resolution provides new insights about the structure of space–time and the limitations of the equivalence between inertial reference frames.


Galaxies ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 73
Author(s):  
Fan Zhang

Higher dimensional theories, wherein our four dimensional universe is immersed into a bulk ambient, have received much attention recently, and the directions of investigation had, as far as we can discern, all followed the ordinary Euclidean hypersurface theory’s isometric immersion recipe, with the spacetime metric being induced by an ambient parent. We note, in this paper, that the indefinite signature of the Lorentzian metric perhaps hints at the lesser known equiaffine hypersurface theory as being a possibly more natural, i.e., less customized beyond minimal mathematical formalism, description of our universe’s extrinsic geometry. In this alternative, the ambient is deprived of a metric, and the spacetime metric becomes conformal to the second fundamental form of the ordinary theory, therefore is automatically indefinite for hyperbolic shapes. Herein, we advocate investigations in this direction by identifying some potential physical benefits to enlisting the help of equiaffine differential geometry. In particular, we show that a geometric origin for dark energy can be proposed within this framework.


1967 ◽  
Vol 22 (9) ◽  
pp. 1328-1332 ◽  
Author(s):  
Jürgen Ehlers

The transition from the (covariantly generalized) MAXWELL equations to the geometrical optics limit is discussed in the context of general relativity, by adapting the classical series expansion method to the case of curved space time. An arbitrarily moving ideal medium is also taken into account, and a close formal similarity between wave propagation in a moving medium in flat space time and in an empty, gravitationally curved space-time is established by means of a normal hyperbolic optical metric.


Pramana ◽  
2003 ◽  
Vol 60 (6) ◽  
pp. 1161-1169
Author(s):  
K. G. Arun ◽  
Minu Joy ◽  
V. C. Kuriakose

2011 ◽  
Vol 08 (02) ◽  
pp. 345-365 ◽  
Author(s):  
ROGER NAKAD

On Spinc manifolds, we study the Energy-Momentum tensor associated with a spinor field. First, we give a spinorial Gauss type formula for oriented hypersurfaces of a Spinc manifold. Using the notion of generalized cylinders, we derive the variational formula for the Dirac operator under metric deformation and point out that the Energy-Momentum tensor appears naturally as the second fundamental form of an isometric immersion. Finally, we show that generalized Spinc Killing spinors for Codazzi Energy-Momentum tensor are restrictions of parallel spinors.


1990 ◽  
Vol 05 (20) ◽  
pp. 1599-1604 ◽  
Author(s):  
I.L. BUCHBINDER ◽  
I.L. SHAPIRO ◽  
E.G. YAGUNOV

GUT’s in curved space-time is considered. The set of asymptotically free and asymptotically conformally invariant models based on the SU (N) gauge group is constructed. The general solutions of renormalization group equations are considered as the special ones. Several SU (2N) models, which are finite in flat space-time (on the one-loop level) and asymptotically conformally invariant in external gravitational field are also presented.


Sign in / Sign up

Export Citation Format

Share Document