Pseudo-symmetries of the Phases of (Et4N)2ZnBr4

2000 ◽  
Vol 55 (9-10) ◽  
pp. 801-809 ◽  
Author(s):  
P. Sondergeld ◽  
H. Fuess ◽  
S. A. Mason ◽  
H. Ishihara ◽  
W. W. Schmahl

Abstract The phase sequence of (Et4N)2ZnBr4 has been determined based on thermal analysis. Below the decomposition point (572 K) four phases are distinguished. The structures of three of the phases have been determined from 4-circle diffraction data at 240 (neu-trons), 299 and 373 K (X-rays), respectively. The multiply twinned low-temperature phase (at 240 K) is characterized by a pseudo-orthorhombic lattice (monoclinic, Plal, a = 17.6120(9] Å, b = 8.8195(4) Å, c = 16.1062(6) Å and ß=89.94(2)°), whereas the room-temperature phase (299 K:P421c, a = 8.9874(6)Åand c = 15.9774 Å) and the first high-temperature phase (373 K: P42 /nmc, a= 9.145(4) Å and c = 15.835(8) Å) belong to the tetragonal crystal system. The transitions between the three phases are essen-tially connected with a stepwise ordering of the Et4N+ ions, whereas the positions of the heavy atoms change only slightly. Three 81Br NQR lines are observed between 77 and 204 K.

2000 ◽  
Vol 55 (6) ◽  
pp. 499-503 ◽  
Author(s):  
Kathrin Hofmann ◽  
Barbara Albert

The crystal structure of bis(triethylammonium)closo-decahydrodecaborate [bis(triethylammonium) decaboranate(10)], [(C2H5)3NH]2[B10H10], was determined and refined (space group Pmmn, no. 59, a = 989.7, b = 1333.7, c = 903.7 pm). The compound is a versatile starting material for many substances containing the [BioHio]2- entity and its derivatives. The closo-[B10H10]2- cluster is a bicapped square antiprism which is only slightly distorted. Its deviation from D4d symmetry is smaller than that of the B10 cages in every other compound containing this entity that have been structurally characterised. The presence of additional (N )H ---B3 interactions in form of multiple-centre bonds between the cations and the anions, which were postulated earlier and which should influence the cage symmetry, could not be confirmed. At 55 °C, the transition into a high temperature phase was investigated by X-ray powder diffraction. The high temperature phase crystallises in the tetragonal crystal system (a = 946.9, c = 1351.0 pm).


1991 ◽  
Vol 46 (9) ◽  
pp. 777-784 ◽  
Author(s):  
Marco Lenck ◽  
Shi-qi Dou ◽  
Alarich Weiss

AbstractThe crystal structure of (CH3)4NTlCl4 and (C2H5)4NTlCl4 was determined at room temperature by single crystal technique. (CH3)4NTlCl4: D2h17-Cmmm; Z = 2; a = 913.2pm, b = 894.6 pm, c = 752.5 pm; (C2H5)4NTlCl4: C6v4-P63mc; Z = 2; a = 827.9 pm, c = 1329.8 pm. (C2H5)4NTlCl4 is isomorphous with (C2H5)4NInCl4. The compounds undergoe a phase transition at 239 K and 222 K, respectively. For both compounds no35 Cl NQR signal was observable in the high temperature phase I due to the dynamics of the anion. The 35 Cl NQR was studied in the low temperature phase II of both compounds as a function of temperature. (CH3)4NTlCl4 shows a two line, (C2H5)4NTlCl4 a four line spectrum. The possible phase II structures and the dynamics of the cation, studied by 1H-NMR, are discussed


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Ekaterina Orlova ◽  
Elena Kharitonova ◽  
Timofei Sorokin ◽  
Alexander Antipin ◽  
Nataliya Novikova ◽  
...  

The literature data and the results obtained by the authors on the study of the structure and properties of a series of polycrystalline and single-crystal samples of pure and Mg-doped oxymolybdates Ln2MoO6 (Ln = La, Pr, Nd) are analyzed. Presumably, the high-temperature phase I41/acd of Nd2MoO6 single crystals is retained at room temperature. The reason for the loss of the center of symmetry in the structures of La2MoO6 and Pr2MoO6 and the transition to the space group I4¯c2 is the displacement of oxygen atoms along the twofold diagonal axes. In all structures, Mg cations are localized near the positions of the Mo atoms, and the splitting of the positions of the atoms of rare-earth elements is found. Thermogravimetric studies, as well as infrared spectroscopy data for hydrated samples of Ln2MoO6 (Ln = La, Pr, Nd), pure and with an impurity of Mg, confirm their hygroscopic properties.


1982 ◽  
Vol 20 ◽  
Author(s):  
R. Moret ◽  
R. Comes ◽  
G. Furdin ◽  
H. Fuzellier ◽  
F. Rousseaux

ABSTRACTIn α-C5n-HNO3 the condensation of the room-temperature liquid-like diffuse ring associated with the disorder-order transition around 250 K is studied and the low-temperature. superstructure is examined.It is found that β-C8n-HNO3 exhibits an in-plane incommensurate order at room temperature.Two types of graphite-Br2 are found. Low-temperature phase transitions in C8Br are observed at T1 ≍ 277 K and T2 ≍ 297 K. The room-temperature structure of C14Br is reexamined. Special attention is given to diffuse scattering and incommensurability.


2021 ◽  
Vol 21 (1) ◽  
pp. 51-60
Author(s):  
A.O. Korol ◽  
◽  
V.Yu. Kapitan ◽  
◽  
◽  
...  

The authors describe a method for determining the critical point of a second-order phase transitions using a convolutional neural network based on the Ising model on a square lattice. Data for training were obtained using Metropolis algorithm for different temperatures. The neural network was trained on the data corresponding to the low-temperature phase, that is a ferromagnetic one and high-temperature phase, that is a paramagnetic one, respectively. After training, the neural network analyzed input data from the entire temperature range: from 0.1 to 5.0 (in dimensionless units) and determined (the Curie temperature T_c). The accuracy of the obtained results was estimated relative to the Onsager solution for a flat lattice of Ising spins.


2005 ◽  
Vol 20 (3) ◽  
pp. 254-258 ◽  
Author(s):  
S. N. Achary ◽  
A. K. Tyagi

A series of mixed fluoride compositions with PbF2 and ScF3 were prepared by heating the intimate mixtures of component fluorides at 600 °C for 10 h followed by slowly cooling to room temperature. The products obtained were analyzed by powder XRD to reveal the phases present in them and hence the low-temperature phase equilibria in the PbF2-ScF3 system. The phase equilibria show the fluorite-type solid solution up to the composition of about 15 mol% of ScF3 in the PbF2 lattice. The unit cell volume decreases with increasing ScF3 contents in the fluorite-type solid solutions. Beyond the solubility limit, the biphasic mixture of the cubic fluorite-type solid solution and leftover ScF3 is found to exist.


2021 ◽  
Author(s):  
Jing-Wei Yu ◽  
Hai-Jiao Yu ◽  
Qiu Ren ◽  
Jin Zhang ◽  
Yang Zou ◽  
...  

Open-framework zinc phosphate (NMe4)(ZnP2O8H3) undergoes irreversible phase transformation. Structural transformation with α (NMe4.Zn[HPO4][H2PO4] the low-temperature phase) and β (NMe4.ZnH3[PO4]2 the high-temperature phase) (Tc=149 °C) and conduction properties were investigated by...


2019 ◽  
Vol 75 (8) ◽  
pp. 1036-1044 ◽  
Author(s):  
Małgorzata Katarzyna Cabaj ◽  
Roman Gajda ◽  
Anna Hoser ◽  
Anna Makal ◽  
Paulina Maria Dominiak

Crystals of hypoxanthinium (6-oxo-1H,7H-purin-9-ium) nitrate hydrates were investigated by means of X-ray diffraction at different temperatures. The data for hypoxanthinium nitrate monohydrate (C5H5N4O+·NO3 −·H2O, Hx1) were collected at 20, 105 and 285 K. The room-temperature phase was reported previously [Schmalle et al. (1990). Acta Cryst. C46, 340–342] and the low-temperature phase has not been investigated yet. The structure underwent a phase transition, which resulted in a change of space group from Pmnb to P21/n at lower temperature and subsequently in nonmerohedral twinning. The structure of hypoxanthinium dinitrate trihydrate (H3O+·C5H5N4O+·2NO3 −·2H2O, Hx2) was determined at 20 and 100 K, and also has not been reported previously. The Hx2 structure consists of two types of layers: the `hypoxanthinium nitrate monohydrate' layers (HX) observed in Hx1 and layers of Zundel complex H3O+·H2O interacting with nitrate anions (OX). The crystal can be considered as a solid solution of two salts, i.e. hypoxanthinium nitrate monohydrate, C5H5N4O+·NO3 −·H2O, and oxonium nitrate monohydrate, H3O+(H2O)·NO3 −.


1987 ◽  
Vol 42 (7) ◽  
pp. 739-748 ◽  
Author(s):  
Dirk Borchers ◽  
Alarich Weiss

A phase transition has been observed in bis(pyridinium) hexachlorometallates (C5H5NH)2[MIVCl6]. M = Sn. Te. Pb. Pt. The crystal structure of the low temperature phase II of the salt with M = Sn was determined, space group C 1ḷ- P 1̅, Z = 1 (a = 734.1pm, b = 799.0 pm, c = 799.7 pm,α= 83.229°. β = 65.377°, γ= 84.387°, T = 297 K). The four compounds are isotypic in phase II as well as in the high temperature phase I (C2H2-B2 /m, Z = 2) for which the crystal structure is known for M = Te . The lattice constants of all compounds (both phases) are given. The temperature dependence of the 35Cl NQR spectrum was investigated. The three line 35Cl NQR spectrum is in agreement with the crystal structure. The dynamics of the pyridinium ring shows up in a fade out of part of the 35Cl NQR spectrum . The influence o f H ↔ D exchange on 35Cl NQR is studied and an assignment of ν (35Cl) ↔ Cl(i) is proposed. The nature of the phase transition P1̅ (Z = 1) ↔ B2 /m (Z = 2) is discussed.


2018 ◽  
Vol 233 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Masoumeh Tabatabaee ◽  
Morgane Poupon ◽  
Václav Eigner ◽  
Přemysl Vaněk ◽  
Michal Dušek

AbstractThe room temperature structure withP21/csymmetry of the zinc(II) complex of pyridine-2,6-dicarboxylic acid was published by Okabe and Oya (N. Okabe, N. Oya, Copper(II) and zinc(II) complexes of pyridine-2,6-dicarboxylic acid.Acta Crystallogr. C.2000,56, 305). Here we report crystal structure of the low temperature phaseβ-[Zn(pydcH)2]·3H2O, pydc=C7H3NO4, resulting from the phase transition around 200K. The diffraction pattern of the low temperature phase revealed satellite reflections, which could be indexed with q-vector 0.4051(10)b* corresponding to (3+1)Dincommensurately modulated structure. The modulated structure was solved in the superspace groupX21/c(0b0)s0, whereXstands for a non-standard centring vector (½, 0, 0, ½), and compared with the room temperature phase. It is shown that hydrogen bonds are the main driving force of modulation.


Sign in / Sign up

Export Citation Format

Share Document