A General ANNV Family with a Common Special Kac-Moody-Virasoro Symmetry Algebra

2004 ◽  
Vol 59 (6) ◽  
pp. 337-340 ◽  
Author(s):  
Heng-Chun Hu ◽  
S. Y. Lou

A general asymmetric Nizhnik-Novikov-Veselov (ANNV) family with an arbitrary function of high order group invariants is proposed. It is proved that the general ANNV family possesses a common infinite dimensional Kac-Moody-Virasoro symmetry algebra. The Kac-Moody-Virasoro group invariant solutions and the Kac-Moody group invariant solutions of the ANNV family are also studied.- PACS: 02.30.Jr, 02.30.Ik, 05.45.Yv.

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Lizhen Wang ◽  
Qing Huang ◽  
Yanmei Di

With the aid of symbolic computation by Maple, we extend the application of Virasoro-type symmetry prolongation method to coupled systems with two-component nonlinear equations. New nonlinear systems admitting infinitely dimensional centerless Virasoro-type symmetry algebra are constructed. Taking one of them as an example, we present some group-invariant solutions to one of the new model systems.


2013 ◽  
Vol 68 (8-9) ◽  
pp. 510-514 ◽  
Author(s):  
Andrew G. Johnpillai ◽  
Abdul H. Kara ◽  
Anjan Biswas

We study the scalar complex modified Korteweg-de Vries (cmKdV) equation by analyzing a system of partial differential equations (PDEs) from the Lie symmetry point of view. These systems of PDEs are obtained by decomposing the underlying cmKdV equation into real and imaginary components. We derive the Lie point symmetry generators of the system of PDEs and classify them to get the optimal system of one-dimensional subalgebras of the Lie symmetry algebra of the system of PDEs. These subalgebras are then used to construct a number of symmetry reductions and exact group invariant solutions to the system of PDEs. Finally, using the Lie symmetry approach, a couple of new conservation laws are constructed. Subsequently, respective conserved quantities from their respective conserved densities are computed.


2014 ◽  
Vol 69 (8-9) ◽  
pp. 489-496 ◽  
Author(s):  
Mir Sajjad Hashemi ◽  
Ali Haji-Badali ◽  
Parisa Vafadar

In this paper, we utilize the Lie symmetry analysis method to calculate new solutions for the Fornberg-Whitham equation (FWE). Applying a reduction method introduced by M. C. Nucci, exact solutions and first integrals of reduced ordinary differential equations (ODEs) are considered. Nonlinear self-adjointness of the FWE is proved and conserved vectors are computed


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Gülden Gün ◽  
Teoman Özer

We analyze Noether and -symmetries of the path equation describing the minimum drag work. First, the partial Lagrangian for the governing equation is constructed, and then the determining equations are obtained based on the partial Lagrangian approach. For specific altitude functions, Noether symmetry classification is carried out and the first integrals, conservation laws and group invariant solutions are obtained and classified. Then, secondly, by using the mathematical relationship with Lie point symmetries we investigate -symmetry properties and the corresponding reduction forms, integrating factors, and first integrals for specific altitude functions of the governing equation. Furthermore, we apply the Jacobi last multiplier method as a different approach to determine the new forms of -symmetries. Finally, we compare the results obtained from different classifications.


2019 ◽  
Vol 16 (09) ◽  
pp. 1950135
Author(s):  
Bismah Jamil ◽  
Tooba Feroze ◽  
Muhammad Safdar

We find one-dimensional optimal systems of the Lie subalgebras of Noether symmetries associated with systems of geodesic equations. Further, we find invariants corresponding to each element of the derived optimal system. The derived invariants are shown to reduce systems of geodesic equations (nonlinear systems of quadratically semi-linear second-order ordinary differential equations (ODEs)) to nonlinear systems of first-order ODEs. The resulting systems are solved via known methods (e.g. separation of variables, integrating factor, etc.). In some cases, we provide exact solutions of these systems of geodesic equations.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Ben Gao ◽  
Yanxia Wang

In this paper, the Lie group method is performed on a special dark fluid, the Chaplygin gas, which describes both dark matter and dark energy in the present universe. Based on an optimal system of one-dimensional subalgebras, similarity reductions and group invariant solutions are given. Finally, by means of Ibragimov’s method, conservation laws are obtained.


Sign in / Sign up

Export Citation Format

Share Document