Electrodeposition of Zinc from Binary ZnCl2-DMSO2 Molten Electrolyte at Room Temperature

2007 ◽  
Vol 62 (12) ◽  
pp. 754-760
Author(s):  
Chao-Chen Yang ◽  
Min-Fong Shu

The electrochemical behaviour of zinc on copper, platinum, and tungsten working electrodes was investigated in a binary ZnCl2-DMSO2 room temperature molten salt electrolyte in the temperature range of 60 - 80◦C. Various over-potentials, −0.1, −0.2, −0.3, −0.4, and −0.5 V, were chosen as deposition potentials. The nucleation/growth of zinc changed from progressive to instantaneous if the over-potentials increased from low to high level. The surface morphology and crystal structure of the deposited layer were investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Moreover, larger grain size and hexagonal close packing of the zinc layer at −0.5 V were observed by transmission electron microscopy (TEM) with electron diffraction mapping.

2019 ◽  
Vol 19 (11) ◽  
pp. 7026-7034 ◽  
Author(s):  
M. Thiruppathi ◽  
M. Vahini ◽  
P. Devendran ◽  
M. Arunpandian ◽  
K. Selvakumar ◽  
...  

The hydrothermally synthesized CuWO4 nanoparticles (NPs) were characterized with different analysis such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM), Energy Dispersive X-ray Spectroscopy (EDX), Cyclic Voltammetry (CV), UV-Visible and Photoluminescence (PL) analysis. The prepared CuWO4 NPs were examined with Electrochemical Impedance Spectroscopy (EIS). SEM images show that CuWO4 NPs are highly spherical shaped morphology and porous in nature. The optical band gap of prepared CuWO4 NPs is found to be 2.12 eV. Photodegradation of diclofenac sodium (DFS) (medical waste) in the aqueous medium with CuWO4 NPs under visible light irradiation shows 98% degradation. The CuWO4 NPs was stable up to 5th cycle it can be used as a reusable photocatalyst for the DFS degradation. The electrical conductivity and dielectric properties of the CuWO4 NPs at room temperature is analyzed by EIS studies. The bulk conductivity value of the prepared nanoparticles is 1.477×10-5 S/cm at room temperature. The conductivity of CuWO4 NPs is found to be due to electrons movement. The CuWO4 NPs shows higher photocatalytic and electrocatalytic activity for decomposition of DFS and methanol electro-oxidation in alkaline medium respectively.


2010 ◽  
Vol 97-101 ◽  
pp. 4213-4216
Author(s):  
Jian Xiong Liu ◽  
Zheng Yu Wu ◽  
Guo Wen Meng ◽  
Zhao Lin Zhan

Novel single-crystalline SnO2 zigzag nanoribbons have been successfully synthesized by chemical vapour deposition. Sn powder in a ceramic boat covered with Si plates was heated at 1100°C in a flowing argon atmosphere to get deposits on a Si wafers. The main part of deposits is SnO2 zigzag nanoribbons. They were characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). SEM observations reveal that the SnO2 zigzag nanoribbons are almost uniform, with lengths near to several hundred micrometers and have a good periodically tuned microstructure as the same zigzag angle and growth directions. Possible growth mechanism of these zigzag nanoribbons was discussed. A room temperature PL spectrum of the zigzag nanoribbons shows three peaks at 373nm, 421nm and 477nm.The novel zigzag microstructures will provide a new candidate for potential application.


2005 ◽  
Vol 20 (3) ◽  
pp. 563-566 ◽  
Author(s):  
Tetsuji Saito ◽  
Hiroyuku Takeishi ◽  
Noboru Nakayama

We report a new compression shearing method for the production of bulk amorphous materials. In this study, amorphous Nd–Fe–B melt-spun ribbons were successfully consolidated into bulk form at room temperature by the compression shearing method. X-ray diffraction and transmission electron microscopy studies revealed that the amorphous structure was well maintained in the bulk materials. The resultant bulk materials exhibited the same magnetic properties as the original amorphous Nd–Fe–B materials.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Nayely Torres-Gómez ◽  
Osvaldo Nava ◽  
Liliana Argueta-Figueroa ◽  
René García-Contreras ◽  
Armando Baeza-Barrera ◽  
...  

In this work, we present a simple and efficient method for pure phase magnetite (Fe3O4) nanoparticle synthesis. The phase structure, particle shape, and size of the samples were characterized by Raman spectroscopy (Rm), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDS), and transmission electron microscopy (TEM). The morphology tuning was controlled by the temperature of the reaction; the nanoparticles were synthesized via the hydrothermal method at 120°C, 140°C, and 160°C, respectively. The Rm and XRD spectra showed that all the nanoparticles were Fe3O4 in a pure magnetite phase. The obtained nanoparticles exhibited a high level of crystallinity with uniform morphology at each temperature, as can be observed through TEM and SEM. These magnetic nanoparticles exhibited good saturation magnetization and the resulting shapes were quasi-spheres, octahedrons, and cubes. The samples showed striking magnetic properties, which were examined by a vibrating sample magnetometer (VSM). It has been possible to obtain a good morphological control of nanostructured magnetite in a simple, economical, and scalable method by adjusting the temperature, without the modification of any other synthesis parameter.


1999 ◽  
Vol 562 ◽  
Author(s):  
Michelle Chen ◽  
Suraj Rengarajan ◽  
Peter Hey ◽  
Yezdi Dordi ◽  
Hong Zhang ◽  
...  

ABSTRACTSelf-annealing properties of electroplated and sputtered copper films at room temperature were investigated in this study, in particular, the effect of copper film thickness, electrolyte systems used, as well as their level of organic additives for electroplating. Real-time grain growth was observed by transmission electron microscopy. Sheet resistance and X-ray diffraction measurements further confirmed the recrystallization of the electroplated copper film with time. The recrystallization of electroplated films was then compared with that of sputtered copper films.


2019 ◽  
Vol 9 (22) ◽  
pp. 4878 ◽  
Author(s):  
Jae-Hun Kim ◽  
Ali Mirzaei ◽  
Hyoun Woo Kim ◽  
Hong Joo Kim ◽  
Phan Quoc Vuong ◽  
...  

X-Ray radiation sensors that work at room temperature are in demand. In this study, a novel, low-cost real-time X-ray radiation sensor based on SnO2 nanowires (NWs) was designed and tested. Networked SnO2 NWs were produced via the vapor–liquid–solid technique. X-ray diffraction (XRD), transmission electron microscopy (TEM) and field emission scanning electron microscopy (SEM) analyses were used to explore the crystallinity and morphology of synthesized SnO2 NWs. The fabricated sensor was exposed to X-rays (80 kV, 0.0–2.00 mA) and the leakage current variations were recorded at room temperature. The SnO2 NWs sensor showed a high and relatively linear response with respect to the X-ray intensity. The X-ray sensing results show the potential of networked SnO2 NWs as novel X-ray sensors.


NANO ◽  
2016 ◽  
Vol 11 (07) ◽  
pp. 1650079 ◽  
Author(s):  
Wenjun Yan ◽  
Ming Hu ◽  
Jiran Liang ◽  
Dengfeng Wang ◽  
Yulong Wei ◽  
...  

A novel composite of Au-functionalized porous silicon (PS)/V2O5 nanorods (PS/V2O5:Au) was prepared to detect NO2 gas. PS/V2O5 nanorods were synthesized by a heating process of pure vanadium film on PS, and then the obtained PS/V2O5 nanorods were functionalized with dispersed Au nanoparticles. Various analytical techniques, such as field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), have been employed to investigate the properties of PS/V2O5:Au. Herein, the PS/V2O5:Au sample exhibited improved NO2-sensing performances in response, stability and selectivity at room temperature (25[Formula: see text]C), compared with the pure PS/V2O5 nanorods. These phenomena were closely related to not only the dispersed Au nanoparticles acting as a catalyst but also the p-n heterojunctions between PS and V2O5 nanorods. Whereas, more Au nanoparticles suppressed the improvement of response to NO2 gas.


1999 ◽  
Vol 564 ◽  
Author(s):  
Michelle Chen ◽  
Suraj Rengarajan ◽  
Peter Hey ◽  
Yezdi Dordi ◽  
Hong Zhang ◽  
...  

AbstractSelf-annealing properties of electroplated and sputtered copper films at room temperature were investigated in this study, in particular, the effect of copper film thickness, electrolyte systems used, as well as their level of organic additives for electroplating. Real-time grain growth was observed by transmission electron microscopy. Sheet resistance and X-ray diffraction measurements further confirmed the recrystallization of the electroplated copper film with time. The recrystallization of electroplated films was then compared with that of sputtered copper films.


1992 ◽  
Vol 286 ◽  
Author(s):  
John Q. Xiao ◽  
J. Samuel ◽  
C. L. Chien

ABSTRACTWe have studied the structure of the Co-Ag granular system across the entire composition range, as well as the annealed samples, using transmission electron microscopy (TEM) and x-ray diffraction. GMR, as much as 80% at 5K and 25% at room temperature, have been observed. The absolute values of the resistivity (ρ) and the change of the resistivity (δρ) as functions of the magnetic Co concentration and the annealing temperature have been determined. A linear relation between δρ and I/rco, where rco is Co particle size, has been found. This result suggests that the magnetic scattering at the interfaces is crucial to GMR.


2012 ◽  
Vol 02 (01) ◽  
pp. 1250007 ◽  
Author(s):  
LAXMAN SINGH ◽  
U. S. RAI ◽  
K. D. MANDAL ◽  
MADHU YASHPAL

Ultrafine powder of CaCu2.80Zn0.20Ti4O12 ceramic was prepared using a novel semi-wet method. DTA/TG analysis of dry powder gives pre-information about formation of final product around 800°C. The formation of single phase was confirmed by X-ray diffraction analysis. The average particle size of sintered powder of the ceramic obtained from XRD and Transmission electron microscopy was found 59 nm and 102 nm, respectively. Energy Dispersive X-ray studies confirm the stoichiometry of the synthesized ceramic. Dielectric constant of the ceramic was found to be 2617 at room temperature at 1 kHz.


Sign in / Sign up

Export Citation Format

Share Document