The Dispersion Relation for the 1/sinh2 Potential in the Classical Limit

2009 ◽  
Vol 64 (3-4) ◽  
pp. 153-156
Author(s):  
Joel Campbell

Abstract The dispersion relation for the inverse hyperbolic potential is calculated in the classical limit. This is shown for both the low amplitude phonon branch and the high amplitude soliton branch. It is shown that these results qualitatively follow the previously found ones for the inverse squared potential where explicit analytic solutions are known

Author(s):  
Patrick Stahl ◽  
G. Nakhaie Jazar

Non-smooth piecewise functional isolators are smart passive vibration isolators that can provide effective isolation for high frequency/low amplitude excitation by introducing a soft primary suspension, and by preventing a high relative displacement in low frequency/high amplitude excitation by introducing a relatively damped secondary suspension. In this investigation a linear secondary suspension is attached to a nonlinear primary suspension. The primary is assumed to be nonlinear to model the inherent nonlinearities involved in real suspensions. However, the secondary suspension comes into action only during a short period of time, and in mall domain around resonance. Therefore, a linear assumption for the secondary suspension is reasonable. The dynamic behavior of the system subject to a harmonic base excitation has been analyzed utilizing the analytic results derived by applying the averaging method. The analytic results match very well in the transition between the two suspensions. A sensitivity analysis has shown the effect of varying dynamic parameters in the steady state behavior of the system.


Geophysics ◽  
1997 ◽  
Vol 62 (5) ◽  
pp. 1365-1368
Author(s):  
M. Boulfoul ◽  
Doyle R. Watts

The petroleum exploration industry uses S‐wave vertical seismic profiling (VSP) to determine S‐wave velocities from downgoing direct arrivals, and S‐wave reflectivities from upgoing waves. Seismic models for quantitative calibration of amplitude variation with offset (AVO) data require S‐wave velocity profiles (Castagna et al., 1993). Vertical summations (Hardage, 1983) of the upgoing waves produce S‐wave composite traces and enable interpretation of S‐wave seismic profile sections. In the simplest application of amplitude anomalies, the coincidence of high amplitude P‐wave reflectivity and low amplitude S‐wave reflectivity is potentially a direct indicator of the presence of natural gas.


2020 ◽  
Vol 15 (5) ◽  
pp. 68-72
Author(s):  
V.L. Gritsinskaya ◽  
◽  
V.P. Novikova ◽  
A.I. Khavkin ◽  
◽  
...  

Objective. To identify specific features of pubertal growth spurt in adolescents depending on their nutritional status in prepuberty. Patients and methods. We analyzed the dynamics of height and weight in 645 children (331 boys and 314 girls) aged between 8 and 16 years. All study participants were divided into three groups depending on whether their weight and height at the age of 8 years were within the normal limits given in the ‘WHO Growth Reference 2007’: children with physical development; underweight children; and overweight children. Results. The dynamics of somatometric parameters during pubertal growth spurt varied between children with different nutritional status. Underweight boys demonstrated prolonged and low-amplitude pubertal growth pattern; in boys with normal physical development, the growth spurt was usually shorter and had high amplitude. In overweight boys, the pubertal growth spurt started with higher annual increase in height, had a more pronounced amplitude, and was shorter than in peers (р < 0.001 ÷ р < 0.05). Both underweight girls and girls with normal physical development demonstrated low-amplitude pubertal growth spurt lasting for two years. Overweight girls had two peaks of pubertal growth spurt, which usually started earlier than in other girls (р < 0.001 ÷ р < 0.01). Conclusion. Our findings can be used as a guide for predicting pubertal spurt in children during medical examinations, determining adequate physical activity in physical education classes at school and in sports sections. Key words: children, nutritional status, pubertal growth spurt


1980 ◽  
Vol 88 (1) ◽  
pp. 367-374
Author(s):  
A. E. BRAFIELD

Oxygen consumption by Calliactis parasitica, measured in a continuousflow polarographic respirometer, yielded a slope of 0·92 when plotted against body weight on log scales. This high value is discussed in terms of the sea anemone's basically laminate nature. Strip-chart records of the oxygen concentration of water which had just passed a specimen of Calliactis commonly showed rhythmic fluctuations, either of low amplitude and high frequency or high amplitude and low frequency (mean cycle lengths 11 and 34 min respectively). The fluctuations are explained in terms of rhythmic muscular contractions which irrigate the enteron for respiratory purposes. Analysis of the slow fluctuations indicates that the endoderm is responsible for about 18% of the total oxygen consumption. The oxygen concentration of water in the enteron, measured and recorded continuously, was 4–27% of the air-saturation level. These strip chart records also frequently showed rhythmic fluctuations (mean cycle length 12 min), apparently resulting from the muscular contractions.


Author(s):  
Andrew Adamatzky ◽  
Alessandro Chiolerio ◽  
Georgios Sirakoulis

We study long-term electrical resistance dynamics in mycelium and fruit bodies of oyster fungi P. ostreatus. A nearly homogeneous sheet of mycelium on the surface of a growth substrate exhibits trains of resistance spikes. The average width of spikes is c. 23[Formula: see text]min and the average amplitude is c. 1[Formula: see text]k[Formula: see text]. The distance between neighboring spikes in a train of spikes is c. 30[Formula: see text]min. Typically, there are 4–6 spikes in a train of spikes. Two types of electrical resistance spikes trains are found in fruit bodies: low frequency and high amplitude (28[Formula: see text]min spike width, 1.6[Formula: see text]k[Formula: see text] amplitude, 57[Formula: see text]min distance between spikes) and high frequency and low amplitude (10[Formula: see text]min width, 0.6[Formula: see text]k[Formula: see text] amplitude, 44[Formula: see text]min distance between spikes). The findings could be applied in monitoring of physiological states of fungi and future development of living electronic devices and sensors.


2015 ◽  
Vol 27 (2) ◽  
pp. 304 ◽  
Author(s):  
J. J. J. van Leeuwen ◽  
M. R. T. M. Martens ◽  
J. Jourquin ◽  
M. A. Driancourt ◽  
A. Wagner ◽  
...  

This study investigated the endocrine background of follicle size changes during post-weaning altrenogest treatment. altrenogest-treated sows received a 20-mg dosage daily at 8.00 a.m. from Day –1 to Day 14 after weaning. On Day –1, only 3/13 altrenogest-treated sows showed LH pulses compared with 8/8 control sows (P = 0.001). On Day 0, control sows showed a typical high frequency–low amplitude LH pattern, indicative for recruitment of oestrogenic follicles. In altrenogest-treated animals on Day 0, half of the sows showed high frequency–high amplitude pulses from 4–5 h after weaning. In altrenogest-treated sows, average follicle size increased from 3.1 ± 0.5 mm on Day 0 to 4.4 ± 0.6 mm on Day 5, then decreased to 3.7 ± 0.5 mm on Day 7 and stabilised thereafter. FSH and oestradiol (E2) concentrations showed a distinct diurnal pattern; high at 7.00 a.m. and low at 3.00 p.m. E2 concentrations (7.00 a.m.) showed a 2.5-fold increase from Day –1 to Day 2, and subsequently a 2-fold decline to reach a plateau at Day 8. FSH concentrations reached maximum levels by Day 5 and slowly declined afterwards. In conclusion, once-daily administration of altrenogest starting one day before weaning delays the weaning-induced increase in LH pulses. Although FSH and follicle size increase until Day 5 after weaning, follicle E2 production already decreased from Day 2 after weaning. Post-weaning altrenogest treatment thus results in a follicular wave of follicles that lose oestrogenic competence at Day 2 after weaning, presumably related to the changed LH dynamics during altrenogest treatment.


1982 ◽  
Vol 48 (4) ◽  
pp. 1033-1047 ◽  
Author(s):  
W. E. Sullivan

1. In order to investigate the possible neural mechanisms underlying delay-dependent facilitation in the bat's auditory cortex (18), the responses to single FM pulses of varying amplitude were examined. Analysis of amplitude-spike count functions revealed three distinct types: monotonic, simple nonmonotonic, and complex nonmonotonic. The complex nonmonotonic function had two separate amplitude peaks, with a clear notch or worst amplitude between them. Other units had spike count functions that were mainly monotonic or nonmonotonic, but showed some evidence for a second response region. 2. Examination of response latency revealed another novel response property, which has been termed the paradoxical latency shift. Units with this response property responded at a shorter latency to sounds of low amplitude than to sounds of high amplitude. The paradoxical latency shift also appears to be related to the twin-peaked complex nonmonotonic response function. Units with the most prominent twin-peaked response functions also had the clearest latency shifts. In these units, the high-amplitude peak corresponded to the long-latency response and the low-amplitude peak to the short-latency-response. 3. These curious spike count and latency observations can be explained if they are considered in relation to the temporal and amplitude pattern of the acoustic input during echolocation. In echolocation, a loud orientation pulse is followed by a weaker echo. In delay-dependent facilitation, this pulse-echo sequence is followed by a neural response if the pulse-echo delay is appropriate. The simplest model for delay-dependent facilitation assumes that a synchronization of excitatory inputs from the pulse and echo is needed for facilitation. Since the weaker echo occurs after the pulse, it is closer in time to the postulated synchronization point. Therefore, in order for this model to work, the echo input must reach the summation place with less of a time lag than the pulse input. This is exactly what is seen with the paradoxical latency shift; the loud "pulse" response is delayed relative to the weak "echo" response.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Zeynep Bal ◽  
Bahar Gurlek Demirci ◽  
Suleyman Karakose ◽  
Emre Tutal ◽  
Mehtap Erkmen Uyar ◽  
...  

Purpose. We aimed to investigate the factors influencing hemoglobin variability with inflammatory and nutritional parameters and its associations with all-cause mortality among hemodialysis patients. Methods. One hundred and sixty-nine patients during the entire 12 months were enrolled into the study. Fasting plasma glucose, creatinine, calcium, phosphorus, alkaline phosphatase, parathyroid hormone (PTH), C-reactive protein (CRP), serum iron, serum iron-binding capacity, and transferrin saturation were analyzed. We defined six groups: low, target range, high, low-amplitude fluctuation with low hemoglobin levels, low-amplitude fluctuation with high hemoglobin levels, and high-amplitude fluctuation. Body mass index (BMI), malnutrition-inflammation score (MIS), and Charlson Comorbidity Index were evaluated. Results. Hemoglobin variability was significantly correlated with age, platelet count, and number of hospitalization instances and inversely correlated with erythropoietin dose per body surface area. The coefficient of variation of hemoglobin showed a correlation with MIS and ferritin. The absolute level of hemoglobin showed a negative correlation between PTH, CRP, MIS, number of hospitalization instances and a positive correlation with albumin and BMI. High, low, and target-range groups showed survival advantage compared to the other three groups. In regression analysis, age, CRP levels, MIS, and BMI were the predictors of mortality. Conclusion. Inflammation and duration of anemia were the major predictors of hemoglobin variability. High-amplitude fluctuation predicts high mortality; on the contrary low-amplitude fluctuations is related to better survival. MIS was independently associated with mortality. This trial is registered with NCT03454906.


Author(s):  
Saied Taheri ◽  
Behzad Moslehi ◽  
Vahid Sotoudeh ◽  
Brad M. Hopkins

Early detection of rail defects can avoid derailments and costly damage to the train and railway infrastructure. Small breaks, cracks or corrugations on the rail can quickly propagate after only a few train cars have passed over it, creating a potential derailment. The current technology makes use of a dedicated instrumented car or a separate railway monitoring vehicle to detect large breaks. These cars are usually equipped with accelerometers mounted on the axle or side frame. The simple detection algorithms use acceleration thresholds which are set at high values to eliminate false positives. As a result, rail surface defects that produce low amplitude acceleration signatures may not be detected, and special track components that produce high amplitude acceleration signatures may be flagged as defects. This paper presents the results of a feasibility study conducted to develop new and more advanced sensory systems as well as signal processing algorithms capable of detecting various rail surface irregularities. A dynamic wheel-rail interaction model was used to simulate train dynamics as a result of rail defects and to assess the potential of this new technology on rail defect detection. In a future paper, we will present experimental data in support of the proposed model and simulations.


Sign in / Sign up

Export Citation Format

Share Document