Studies on Sputtered Cu–Zn–Sn–O Precursor to Fabricate Cu2ZnSnS4 Thin Films

2018 ◽  
Vol 73 (10) ◽  
pp. 957-964 ◽  
Author(s):  
Xinxing Liu ◽  
Ruiting Hao ◽  
Qichen Zhao ◽  
Faran Chang ◽  
Yong Li ◽  
...  

AbstractThe Cu2ZnSnS4 (CZTS) thin films were fabricated by sulfurization of radiofrequency magnetron sputtered Cu–Zn–Sn–O (CZTO) precursors. Here, we extend recent works in the field of fabricating CZTO precursors by a new approach sputtering ZnO/Sn/Cu targets. The effects of one-step and two-step annealing processes applied for CZTO precursors on the structure, morphology, optical, and electrical properties were investigated systematically. The preannealing step of fundamental phase formation in the sulfurization process was also discussed. The two-step annealing process was found to affect the composition of element Sn slightly but significantly improved crystallinity, CZTS/Mo interfacial conditions, surface roughness, and electrical properties. The two-step annealed CZTS thin films had excellent optical and electrical properties with an optical band gap of 1.51 eV, a hole concentration of 2.4 × 1017 cm−3, and a hole mobility of 1.97 cm2/(V⋅s). In addition, the CZTS/Mo interface with small grains and voids were significantly improved. CZTS-based solar cell devices were successfully fabricated. The characteristics of current–voltage (J–V) curves indicated that short-circuit currents had a tendency to increase with the improvement of CZTS/Mo interface and surface morphology. As a result, the device based on two-step annealed CZTS thin films exhibited better performance with an open-circuit voltage of 553 mV, short-circuit current of 7.2 mA⋅cm−2, a fill factor of 37.8%, and a conversion efficiency of 1.51%.

2004 ◽  
Vol 822 ◽  
Author(s):  
A. Bellaidi ◽  
K. Ernst ◽  
R. Könenkamp

AbstractWe report on recent progress in fabricating an inorganic solid state solar cell based on a nano-structured substrate with an extremely thin absorber, the so-called eta-cell. The cell uses HgCdTe as an absorber layer and TiO2 as a substrate. By adjusting the Hg/Cd ratio the conduction band edges in these two materials can be brought into alignment. This tuning provides an ideal tool to optimize the optical and electrical properties of the cell. In qualitative agreement with earlier work we find a band offset of 0.25 eV to give maximum transfer rates across the interface. The optimized cell has a short circuit current of 15 mA/cm2 and an open-circuit voltage of 0.6 V. We discuss the optical and electrical properties of the cell, and outline ideas to further improve the performance.


2011 ◽  
Vol 347-353 ◽  
pp. 3666-3669
Author(s):  
Ming Biao Li ◽  
Li Bin Shi

The AMPS-ID program is used to investigate optical and electrical properties of the solar cell of a-SiC:H/a-Si1-xGex:H/a-Si:H thin films. The short circuit current density, open circuit voltage, fill factor and conversion efficiency of the solar cell are investigated. For x=0.1, the conversion efficiency of the solar cell achieve maximum 9.19 % at the a-Si1-xGex:H thickness of 340 nm.


Author(s):  
A. A. Faremi ◽  
S. S. Oluyamo ◽  
K. D. Adedayo ◽  
Y. A. Odusote ◽  
O. I. Olusola

This paper presents the influence of silicon nanoparticles at the interface of heterostructured Cadmium telluride and cadmium sulfide thin films based photovoltaic device with improved electrical parameters leading to tremendous improvement in CdS/CdTe thin f ilm based solar cells performance. The films of CdTe, CdS and Si were electrodeposited using electrodeposition technique to form a heterostructured CdTe/Si/CdS/FTO. The films respective structural properties were also examined using X-ray Diffractometer (XRD) before forming a heterostructured material. The heterostructured CdTe/Si/CdS/FTO and the structure without the inclusion of silicon nanoparticle were examined using electrometer for the extraction of electrical parameters such open circuit voltage (VOC), short circuit current density (JSC), and fill factor (FF). Although a large body of experimental results are available to date on the optoelectronics properties of the materials. However, there is relatively low research studies or works on the electrical properties of the materials. Therefore, we formed heterostructured based photovoltaic device and characterized the structure to determine useful electrical properties. The value obtained for VOC, JSC and FF are 418 mV, 25 mA/cm2 and 0.72 which are indicative of pin holes free semiconductor materials and no leakage path emerging from high-grade materials used in the deposition of heterostructured CdTe/Si/CdS. 


2021 ◽  
Vol 9 ◽  
Author(s):  
Qian Li ◽  
Jinpeng Hu ◽  
Yaru Cui ◽  
Juan Wang ◽  
Yu Hao ◽  
...  

The copper–zinc–tin oxide (CZTO) precursor was synthesized to avoid sudden volume expansion from CZTO precursor to Cu2ZnSnS4 (CZTS) thin films and smooth CZTSSe thin-film surfaces without pinholes. The CZTO precursor was prepared by coprecipitation and ball milling to form nanoink of CZTO. Based on the CZTO precursor, the CZTS thin film was fabricated and then selenized to make pinhole-free and flat Cu2ZnSn(S,Se)4(CZTSSe) thin films. The results show that the CZTO precursor greatly contributed to elevating the homologous surface characteristics and crystallinity of CZTSSe thin films by controlling selenium temperature, selenium time, and selenium source temperature. Finally, the conversion efficiency of the CZTSSe thin-film solar cell fabricated from the CZTO precursor was 4.11%, with an open-circuit voltage (Voc) of 623 mV, a short circuit current density (Jsc) of 16.02 mA cm−2, and a fill factor (FF) of 41.2%.


Author(s):  
Mingqiang Zhong ◽  
Qin Feng ◽  
Changlai Yuan ◽  
Xiao Liu ◽  
Baohua Zhu ◽  
...  

AbstractIn this work, the (1−x)Bi0.5Na0.5TiO3-xBaNi0.5Nb0.5O3 (BNT-BNN; 0.00 ⩽ x ⩽ 0.20) ceramics were prepared via a high-temperature solid-state method. The crystalline structures, photovoltaic effect, and electrical properties of the ceramics were investigated. According to X-ray diffraction, the system shows a single perovskite structure. The samples show the normal ferroelectric loops. With the increase of BNN content, the remnant polarization (Pr) and coercive field (Ec) decrease gradually. The optical band gap of the samples narrows from 3.10 to 2.27 eV. The conductive species of grains and grain boundaries in the ceramics are ascribed to the double ionized oxygen vacancies. The open-circuit voltage (Voc) of ∼15.7 V and short-circuit current (Jsc) of ∼1450 nA/cm2 are obtained in the 0.95BNT-0.05BNN ceramic under 1 sun illumination (AM1.5G, 100 mW/cm2). A larger Voc of 23 V and a higher Jsc of 5500 nA/cm2 are achieved at the poling field of 60 kV/cm under the same light conditions. The study shows this system has great application prospects in the photovoltaic field.


2017 ◽  
Vol 13 ◽  
pp. 863-873 ◽  
Author(s):  
Vinila N Viswanathan ◽  
Arun D Rao ◽  
Upendra K Pandey ◽  
Arul Varman Kesavan ◽  
Praveen C Ramamurthy

A series of low band gap, planar conjugated polymers, P1 (PFDTBT), P2 (PFDTDFBT) and P3 (PFDTTBT), based on fluorene and benzothiadiazole, was synthesized. The effect of fluorine substitution and fused aromatic spacers on the optoelectronic and photovoltaic performance was studied. The polymer, derived from dithienylated benzothiodiazole and fluorene, P1, exhibited a highest occupied molecular orbital (HOMO) energy level at −5.48 eV. Density functional theory (DFT) studies as well as experimental measurements suggested that upon substitution of the acceptor with fluorine, both the HOMO and lowest unoccupied molecular orbital (LUMO) energy levels of the resulting polymer, P2, were lowered, leading to a higher open circuit voltage and short circuit current with an overall improvement of more than 110% for the photovoltaic devices. Moreover, a decrease in the torsion angle between the units was also observed for the fluorinated polymer P2 due to the enhanced electrostatic interaction between the fluorine substituents and sulfur atoms, leading to a high hole mobility. The use of a fused π-bridge in polymer P3 for the enhancement of the planarity as compared to the P1 backbone was also studied. This enhanced planarity led to the highest observed mobility among the reported three polymers as well as to an improvement in the device efficiency by more than 40% for P3.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1752 ◽  
Author(s):  
Arumugam Pirashanthan ◽  
Thanihaichelvan Murugathas ◽  
Neil Robertson ◽  
Punniamoorthy Ravirajan ◽  
Dhayalan Velauthapillai

This work focused on studying the influence of dyes, including a thiophene derivative dye with a cyanoacrylic acid group ((E)-2-cyano-3-(3′,3′′,3′′′-trihexyl-[2,2′:5′,2′′:5′′,2′′′- quaterthiophene]-5-yl) acrylicacid)(4T), on the photovoltaic performance of titanium dioxide (TiO2)/poly(3-hexyl thiophene)(P3HT) solar cells. The insertion of dye at the interface improved the efficiency regardless of the dye used. However, 4T dye significantly improved the efficiency by a factor of three when compared to the corresponding control. This improvement is mainly due to an increase in short circuit current density (JSC), which is consistent with higher hole-mobility reported in TiO2/P3HT nanocomposite with 4T dye. Optical absorption data further revealed that 4T extended the spectral response of the TiO2/P3HT nanocomposite, which could also enhance the JSC. The reduced dark current upon dye insertion ensured the carrier recombination was controlled at the interface. This, in turn, increased the open circuit voltage. An optimized hybrid TiO2/P3HT device with 4T dye as an interface modifier showed an average efficiency of over 2% under-simulated irradiation of 100 mWcm−2 (1 sun) with an Air Mass 1.5 filter.


2018 ◽  
Vol 9 ◽  
pp. 3 ◽  
Author(s):  
Xianghua Zhang ◽  
Ilia Korolkov ◽  
Bo Fan ◽  
Michel Cathelinaud ◽  
Hongli Ma ◽  
...  

In this work, we present for the first time the concept of chalcogenide glass-ceramic for photovoltaic applications with the GeSe2–Sb2Se3–CuI system. It has been demonstrated that thin films, deposited with the sputtering technique, are amorphous and can be crystallized with appropriate heat treatment. The thin film glass-ceramic behaves as a p-type semiconductor, even if it contains p-type Cu2GeSe3and n-type Sb2Se3. The conductivity of Sb2Se3has been greatly improved by appropriate iodine doping. The first photovoltaic solar cells based on the association of iodine-doped Sb2Se3and the glass-ceramic thin films give a short-circuit current density JSCof 10 mA/cm2and an open-circuit voltage VOCof 255 mV, with a power conversion efficiency of about 0.9%.


Sign in / Sign up

Export Citation Format

Share Document