Darstellung und Röntgenstrukturanalyse von (DichIoro)-(1,3,5,7-tetramethyI-2,4,6,8,9,10-hexathiaadamantan)palladium(II), PdCl2(CH3)4C4S6 Preparation and X-Ray Structure Analysis of (D ichloro)-(l,3,5,7-tetram ethyl-2,4,6,8,9,10-hexathiaadam antane)palladium (II), PdCl2(CH3)4C4S6

1986 ◽  
Vol 41 (4) ◽  
pp. 409-412 ◽  
Author(s):  
Joachim Pickardt ◽  
Norbert Rautenberg

By reaction of PdCl2(C6H5CN) 2 with 1,3,5,7-tetram ethyl-2,4,6,8,9,10-hexathiaadam antane, (CH3)4C4S6, (“TMTA”), the complex PdCl2-TMTA could be obtained. X-ray structure analyses were performed for the free ligand TMTA as well as for the adduct. Both com pounds crystallize monoclinically, space group P21/n, lattice parameters for TMTA are a= 845.9(5), b= 1225.8(7), c= 1314.8(8) pm, ß= 93.28(5)°; for PdCl2-TMTA a= 1262.3(3), b= 1376.3(4), c= 939.1(3) pm, and ß= 92.86(5)°. In the palladium complex TMTA acts as a bidentate chelating ligand. The coordination about the Pd atom is approximately square planar, but the bond angle S -Pd -S is only 76.2°

1994 ◽  
Vol 49 (6) ◽  
pp. 733-740 ◽  
Author(s):  
Klaus Stöwe

Well-shaped brown and pink isometric crystals were obtained as by-products of the synthesis of erbium selenides from the elements in evacuated and sealed silica ampoules with graphite inlets. They could be identified as erbium seleno mono- and disilicates by energy dispersive X-ray fluorescence and X-ray structure determination. The monosilicate Er2SeSiO4 crystallizes isotypically to Nd2SeSiO4 in the space group Pbcm with the lattice parameters a = 600.2(2), b = 688.0(2), c = 1075.2(2) pm and represents the second known seleno inosilicate of the rare earths. From X-ray structure analysis an isotypic relation between the disilicate Er3,75Ca0,25Se2,75Cl0,25Si2O7 and the compound Sm4S3Si2O7 was found, the former crystallizing in the space group I41/amd with the lattice parameters a - 1177.7(2) and c = 1376.5(2) pm. The doping o f the sorosilicate with the elements Ca and Cl originated from contam inations in the graphit inlets used in the procedure


1982 ◽  
Vol 37 (2) ◽  
pp. 186-189 ◽  
Author(s):  
Hans H. Karsch ◽  
Ulrich Schubert

Abstract [(Me2PCH2PMe2)]2Ag2](PF6)2 has been prepared and characterized by an X-ray structure analysis. It crystallizes in the space group Pbca with a - 1117(1), b = 1768(5) and c = 1315(2). The dication forms an eight membered centrosymmetric ring, the Ag and P atoms being nearly coplanar. Ag-Ag* 304.1(2) pm. The structure is compared with that of the free ligand [15] and of an analogous Ph2PCH2PPh2 complex of Au(I) [9]


2020 ◽  
Vol 75 (8) ◽  
pp. 765-768
Author(s):  
Bohdana Belan ◽  
Dorota Kowalska ◽  
Mariya Dzevenko ◽  
Mykola Manyako ◽  
Roman Gladyshevskii

AbstractThe crystal structure of the phase Ce5AgxGe4−x (x = 0.1−1.08) has been determined using single-crystal X-ray diffraction data for Ce5Ag0.1Ge3.9. This phase is isotypic with Sm5Ge4: space group Pnma (No. 62), Pearson code oP36, Z = 4, a = 7.9632(2), b = 15.2693(5), c = 8.0803(2) Å; R1 = 0.0261, wR2 = 0.0460, 1428 F2 values and 48 variables. The two crystallographic positions 8d and 4c show Ge/Ag mixing, leading to a slight increase in the lattice parameters as compared to those of the pure binary compound Ce5Ge4.


2017 ◽  
Vol 72 (12) ◽  
pp. 983-988 ◽  
Author(s):  
Martin K. Schmitt ◽  
Hubert Huppertz

Abstractβ-Y(BO2)3 was synthesized in a Walker-type multianvil module at 5.9 GPa/1000°C. The crystal structure has been elucidated through single-crystal X-ray diffraction. β-Y(BO2)3 crystallizes in the orthorhombic space group Pnma (no. 62) with the lattice parameters a=15.886(2), b=7.3860(6), and c=12.2119(9) Å. Its crystal structure will be discussed in the context of the isotypic lanthanide borates β-Ln(BO2)3 (Ln=Nd, Sm, Gd–Lu).


Author(s):  
Nataliya L. Gulay ◽  
Rolf-Dieter Hoffmann ◽  
Jutta Kösters ◽  
Yaroslav M. Kalychak ◽  
Stefan Seidel ◽  
...  

Abstract The equiatomic indide ScPtIn (ZrNiAl type, space group P 6 ‾ $‾{6}$ 2m) shows an extended solid solution Sc3Pt3–xIn3. Several samples of the Sc3Pt3–xIn3 series were synthesized from the elements by arc-melting and subsequent annealing, or directly in a high frequency furnace. The lowest platinum content was observed for Sc3Pt2.072(3)In3. All samples were characterized by powder X-ray diffraction and their lattice parameters and several single crystals were studied on the basis of precise single crystal X-ray diffractometer data. The correct platinum occupancy parameters were refined from the diffraction data. Decreasing platinum content leads to decreasing a and c lattice parameters. Satellite reflections were observed for the Sc3Pt3–xIn3 crystals with x = 0.31–0.83. These satellite reflections could be described with a modulation vector ( 1 3 , 1 3 , γ ) $\left(\frac{1}{3},\frac{1}{3},\gamma \right)$ ( γ = 1 2 $\gamma =\frac{1}{2}$ c* for all crystals) and are compatible with trigonal symmetry. The interplay of platinum filled vs. empty In6 trigonal prisms is discussed for an approximant structure with space group P3m1.


1976 ◽  
Vol 31 (3) ◽  
pp. 342-344 ◽  
Author(s):  
Volker Bätzel

Using three dimensional X-ray data collected on a four circle diffractometer, the structure of (CO)9Co3COBBr2N(C2H5)3 was solved by Patterson and Fourier methods. Least squares refinement with a block-diagonal matrix leads to a reliability index of R = 10.7%. Crystal data: α = 13.277(6) Å, b = 10.17(1) Å, c = 9.22(2) Å; α = 91.12(6)°, β = 87.61(4)°, γ = 98.79(2)°; space group P1̅; Z = 2; V = 1229,7 Å3; Dx = 1.97 gcm-3.


1991 ◽  
Vol 46 (12) ◽  
pp. 1601-1608 ◽  
Author(s):  
Dieter Sellmann ◽  
Stefan Fünfgelder ◽  
Falk Knoch ◽  
Matthias Moll

In order to elucidate specific properties of nickel sulfur complexes, redox and addition-elimination reactions of [Ni(′OS4')]2, [Ni(′NHS4')]2, [Ni(′S5')], [Ni('S4—C5')], and [Ni('S4—C3')] were investigated ('OS4′ 2' = 2,2'-bis(2-mercaptophenylthio)diethylether(2—), 'NHS4'2- = 2,2'-bis(2-mercaptophenylthio)diethylamine(2—), 'S5'2- = 2,2'-bis(2-mercaptophenylthio)diethylsulfide(2—), 'S4-C5'2- = 1,5-bis(2-mercaptophenylthio)pentane(2—), 'S4—C3'2- = 1,3-bis(2-mercaptophenylthio)propane(2—)).Cyclovoltammetry proves the complexes to be redox inactive between —1.4 and +0.8 V vs. NHE. Above +0.8 V the complexes are irreversibly oxidized, below —1,4 V desalkylation takes place and [Ni(′S,′)2]2- is formed. An X-ray structure analysis was carried out of (NMe4)2[Ni(′S2')2], which shows a planar anion with the Ni center in a nearly perfect square planar coordination. Distances and angles are practically identical to those in the [Ni(′S2')2-] monoanion.The complexes coordinate only phosphines as coligands, but thioether donors simultaneously decoordinate and, dependant of reaction temperature, mono- or trisphosphine complexes are formed. [Ni(′S4—C3')(PMe3)] was characterized by X-ray structure analysis and exhibits a square pyramidal coordination geometry.


1993 ◽  
Vol 48 (5) ◽  
pp. 603-607 ◽  
Author(s):  
Ulf Thewalt ◽  
Thomas Wöhrle

The green insoluble TiIV compound which is obtained by treating titanocene with HC1 reacts with PhLi to yield the fulvalene-bridged compound [CpTiPh2]2(C10Hg) 3(Ph). An X-ray structure analysis of 3(Ph) shows, that the Ti atoms are in a trans arrangement with respect to the fulvalene group. Crystal data for 3(Ph) are as follows: C44H38Ti2, orthorhombic, space group P212,1 21, with a = 11,385(2), b = 14,510(2), c = 19,489(4) Å, Z = 4. The crystals exhibit enantiomorphism.


1980 ◽  
Vol 35 (5) ◽  
pp. 522-525 ◽  
Author(s):  
Gisela Beindorf ◽  
Joachim Strähle ◽  
Wolfgang Liebelt ◽  
Kurt Dehnicke

The complexes AsPh4[Cl4V = N-Cl] and AsPh4[VOCl4] are prepared by the reaction of AsPh4Cl with Cl3VNCl and VOCl3, respectively. The IR spectra indicate C4v symmetry for the complex anions with multiple VN and VO bonds and a linear arrangement for the VNCl-group. AsPh4[VOCl4] crystallizes in the tetragonal space group P4/n with two formula units in the unit cell. The crystal structure was solved by X-ray diffraction methods (R = 0,062, 1096 observed, independent reflexions). The structure consists of AsPh4+ cations and [VOCl4]- anions with symmetry C4v. The extremely short VO bond length corresponds with a VO triple; its steric requirements cause the relatively large bond angle OVCl of 103.4°.


2009 ◽  
Vol 64 (8) ◽  
pp. 922-928 ◽  
Author(s):  
Manuel Christian Schaloske ◽  
Hansjürgen Mattausch ◽  
Viola Duppel ◽  
Lorenz Kienle ◽  
Arndt Simon

The compounds Pr6(C2)Br10, Pr10(C2)2Br15 and Pr14(C2)3Br20 were prepared from PrBr3 and the appropriate amounts of Pr and C and characterized by X-ray structure analyses of single crystals. All three compounds crystallize in space group P1 with lattice parameters a = 7.571(2), b = 9.004(2), c = 9.062(2) Å ,α = 108.57(3), β = 97.77(3), γ = 106.28(3)◦ for Pr6(C2)Br10; a = 9.098(2), b = 10.127(2), c = 10.965(2) A° , α = 70.38(3), β = 66.31(3), γ = 70.84(3)◦ for Pr10(C2)2Br15; a = 9.054(2), b = 10.935(2), c = 13.352(3) Å , α = 86.27(3), β = 72.57(3), γ = 66.88(3)◦ for Pr14(C2)3Br20. They are members of a general series Ln4n+2(C2)nBr5n+5 and isostructural with the corresponding iodides known for Ln = La, Ce, Pr. Pr6(C2)Br10 was further characterized via transmission electron microscopy techniques


Sign in / Sign up

Export Citation Format

Share Document