EuPdGe - a New Germanide with EuNiGe Type Structure

1995 ◽  
Vol 50 (8) ◽  
pp. 1181-1184 ◽  
Author(s):  
Rainer Pöttgen

The title compound was prepared from the elemental components in a tantalum tube at 1070 K and investigated by X-ray diffraction of both powder as well as single crystals. The crystal structure was refined from four-circle diffractometer data: P21/n, a = 618.1(1), b = 613.6(1), c = 743.9(1) pm, β = 109.40(1)°, V = 0.2661(1) nm3, Z = 4, wR2 = 0.0536 for 1564 F2 values and 29 variables. EuPdGe crystallizes with the EuNiGe type structure. Both Pd and Ge atoms in EuPdGe have three germanium or palladium neighbors, respectively. They form two-dimensionally infinite [PdGe] polyanions which consist of corrugated 4.82 nets. These polyanions are separated by the europium atoms.

2011 ◽  
Vol 66 (11) ◽  
pp. 1087-1091 ◽  
Author(s):  
Olaf Reckeweg ◽  
Francis J. DiSalvo

Colorless and transparent single crystals of Ba2H3I were obtained by reacting Ba with dried and sublimed NH4I in a 4 : 1 molar ratio in silica-jacketed Nb ampoules at 1100 K for 13 h. The crystal structure of the title compound was determined and refined by means of single-crystal X-ray diffraction. Ba2H3I crystallizes in a stuffed anti-CdI2 structure isotypic to Sr2H3I in the space group P3̄m1 (no. 164) with the lattice parameters a = 451.86(12) and c = 811.84(23) pm. The structural results for Ba2H3I are consistent with bond lengths and coordination geometries of related binary and ternary hydrides


2006 ◽  
Vol 61 (9) ◽  
pp. 1054-1060 ◽  
Author(s):  
Ingo Hartenbach ◽  
Steffen F. Meier ◽  
Thomas Schleid

Abstract During attempts of preparing yttrium oxotellurates(IV) using Y2O3 and TeO2 in YCl3 fluxes, the occasional reaction of these educts with the walls of the evacuated silica ampoules led to colourless, lath-shaped single crystals of Y2[Si2O7] in the new ζ -type structure as a minor by-product which was investigated by X-ray diffraction. The title compound crystallizes monoclinically in the space group P21/m (a = 503.59(5), b = 806.47(8), c = 732.65(7) pm, β = 108.633(6)°) with two formula units per unit cell. The crystallographically unique Y3+ cation is coordinated by seven oxygen atoms (d(Y-O = 221 - 248 pm) arranged in the shape of a slightly distorted monocapped octahedron. The isolated oxodisilicate units [Si2O7]6− consist of two Si4+ cations and seven O2− anions of which five are crystallographically independent. These pyroanions (d(Si-O) = 161 - 168 pm, ∢ (O-Si-O) = 91 - 117°, ∢ (Si-O-Si) = 156°) exhibit an almost perfectly eclipsed conformation built of a horseshoeshaped backbone with the two silicon and three of the oxygen atoms situated on the mirror planes of the unit cell. The remaining four oxide anions complete this [Si2O7]6− entity of two vertex-sharing [SiO4]4− tetrahedra as terminal ligands for silicon. Assembled in planar layers parallel to (−1 0 1), the [Si2O7]6− anions are packed with their wide basal faces of the tetrahedra pointing towards the small waist of the adjacent units and vice versa. The yttrium cations reside between these layers in order to interconnect them three-dimensionally.


Author(s):  
L. Bohatý ◽  
R. Fröhlich

AbstractKZnSbTN is an example from the large acentric double salt-like family of tartrato-antimonates. Its crystal structure was determined from single-crystal X-ray diffraction data (orthorhombic,Single crystals of the title compound of up to 4×4×6 cm


1997 ◽  
Vol 52 (1) ◽  
pp. 141-144 ◽  
Author(s):  
Rainer Pöttgen

Zr5CuSn3 was prepared from the elements in an arc-melting furnace and investigated by X-ray diffraction of powders as well as of single crystals. The crystal structure was refined from four-circle diffractometer data: P63/mcm, a = 860.04(7) pm, c = 586.80(5) pm, V = 0.3759(1) nm3, Z = 2, wR2 = 0.0402 for 371 F2 values and 15 variables. A refinement of the occupancy parameters re­vealed that the copper position is occupied to only 95.3(8)% in the crystal used for the X-ray investigation. Zr5CuSn3 crystallizes in the Hf5CuSn3 type structure, a filled variant of the Mn5Si3 type. The main features of the Zr5CuSn3 structure are condensed Zr6 octahedra that are centered by copper atoms


1995 ◽  
Vol 50 (10) ◽  
pp. 1505-1509 ◽  
Author(s):  
Rainer Pöttgen

Ti2In5 was prepared from the elemental components in a tantalum tube at 970 K and investigated by X-ray diffraction of powders as well as of single crystals. The crystal structure was refined from four-circle diffractometer data: P4/mbm, a = 1000.35(5) pm, c = 299.77(2) pm, V = 0.29998(5) nm3, Z = 2, wR2 = 0.0367 for 369 F2 values and 15 variables. Ti2In5 crystallizes with the Mn2Hg5 type structure. The indium atoms form consecutive planar layers which may be considered as a tesselation of triangles, squares, and pentagons. The titanium atoms occupy the pentagonal prismatic voids between these layers. Ti2In5 is Pauli paramagnetic and a good metallic conductor with a specific resistivity of 50 μΩcm at room temperature. The compound was previously described with the composition “Ti3In4”.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4067
Author(s):  
Giovanni Ricci ◽  
Giuseppe Leone ◽  
Giorgia Zanchin ◽  
Benedetta Palucci ◽  
Alessandra Forni ◽  
...  

Some novel cobalt diphenylphosphine complexes were synthesized by reacting cobalt(II) chloride with (2-methoxyethyl)diphenylphosphine, (2-methoxyphenyl)diphenylphosphine, and 2-(1,1-dimethylpropyl)-6-(diphenylphosphino)pyridine. Single crystals suitable for X-ray diffraction studies were obtained for the first two complexes, and their crystal structure was determined. The novel compounds were then used in association with methylaluminoxane (MAO) for the polymerization of 1,3-butadiene, and their behavior was compared with that exhibited in the polymerization of the same monomer by the systems CoCl2(PnPrPh2)2/MAO and CoCl2(PPh3)2/MAO. Some significant differences were observed depending on the MAO/Co ratio used, and a plausible interpretation for such a different behavior is proposed.


1983 ◽  
Vol 38 (4) ◽  
pp. 426-427 ◽  
Author(s):  
Arndt Simon ◽  
Karl Peters ◽  
Harry Hahn

Abstract The structure of the title compound has been determined by X-ray crystallography. The title compound is synthesized from the elements at 600 °C. Its crystal structure, derived from powder data [3] is refined by single crystal diffractometer data. The structure is trigonal (P3̅ml, α = 684.1(1), c = 724.4(1) pm); Pd2+ cations and PS43- anions form a network with an anti-Claudetite (AS2O3) type structure. The PS4 units are distinctly distorted from ideal tetrahedral symmetry. The Pd atoms have a planar environment of 4 S atoms.


2004 ◽  
Vol 68 (5) ◽  
pp. 757-767 ◽  
Author(s):  
T. Mihajlović ◽  
H. Effenberger

AbstractHydrothermal synthesis produced the new compound SrCo2(AsO4)(AsO3OH)(OH)(H2O). The compound belongs to the tsumcorite group (natural and synthetic compounds with the general formula M(1)M(2)2(XO4)2(H2O,OH)2; M(1)1+,2+,3+ = Na, K, Rb, Ag, NH4, Ca, Pb, Bi, Tl; M(2)2+,3+ = Al, Mn3+, Fe3+, Co, Ni, Cu, Zn; and X5+,6+ = P, As, V, S, Se, Mo). It represents (1) the first Sr member, (2) the until now unknown [7]-coordination for the M(1) position, (3) the first proof of (partially) protonated arsenate groups in this group of compounds, and (4) a new structure variant.The crystal structure of the title compound was determined using single-crystal X-ray diffraction data. The compound is monoclinic, space group P21/a, with a = 9.139(2), b = 12.829(3), c = 7.522(2) Å, β = 114.33(3)°, V = 803.6(3) Å3, Z = 4 [wR2 = 0.065 for 3530 unique reflections]. The hydrogen atoms were located experimentally.


1978 ◽  
Vol 31 (11) ◽  
pp. 2431 ◽  
Author(s):  
BN Figgis ◽  
CL Raston ◽  
RP Sharma ◽  
AH White

The crystal structure of the title compound has been determined at 295 K by single-crystal X-ray diffraction and refined by least squares to a residual of 0.062. Crystals are monoclinic, P2/c, a 19.102(8), b 8.117(4), c 16.610(8) Ǻ, β 111.90(3)°, Z. Unlike the tris(α-oxyimino ketonato)iron(II) complexes which are fac, the present derivative is based upon substitution of the two picoline moieties into a mer derivative, trans to the nitrogen atoms of the chelate ligands. <Fe- N(picoline)> is 2.020; <Fe-N, O(chelate)> 1.880, 1.952 Ǻ.


2020 ◽  
Vol 86 (5) ◽  
pp. 3-12
Author(s):  
Bohdana Belan ◽  
Mykola Manyako ◽  
Mariya Dzevenko ◽  
Dorota Kowalska ◽  
Roman Gladyshevskii

The new ternary silicide Lu3Ni11.74(2)Si4 was synthesized from the elements by arc-melting and its crystal structure was determined by the single-crystal X-ray diffraction. The compound crystallizes in the Sc3Ni11Ge4-type: Pearson symbol hP37.2, space group P63/mmc (No. 194), a = 8.0985(16), c = 8.550(2) Å, Z = 2; R = 0.0244, wR = 0.0430 for 244 reflections. The silicide Lu3Ni11.74(2)Si4 is new member of the EuMg5.2-type structure family.


Sign in / Sign up

Export Citation Format

Share Document