Preparation and Crystal Structures of the Ternary Compounds Ag2SiP2 and AuSiP

1997 ◽  
Vol 52 (4) ◽  
pp. 462-468 ◽  
Author(s):  
Peter Kaiser ◽  
Wolfgang Jeitschko

Abstract The title compounds were prepared by solid state reaction of the elemental components. Their crystal structures were determined from single-crystal X-ray diffractometer data. Ag2SiP2: 14̄2d, a = 652.75(5) pm, c = 855.0(1) pm, Z = 4, R = 0.024 for 611 structure factors and 14 variable parameters; AuSiP: R3m, a = 345.9(1) pm, c = 1720.0(3) pm, Z = 3, R = 0.023 (352 F values, 11 variables). The silicon atoms in Ag2SiP2 are tetrahedrally coordinated by phosphorus atoms. The compound might therefore be considered as a phosphidosilicate and its formula can be rationalized as (Ag+1)2Si+4(P-3)2. However, Ag2SiP2 is not a tetrahedral compound since the phosphorus atoms have five near neighbors (3Ag + 2Si) and the silver atoms are coordinated by three phosphorus atoms in almost trigonal planar coordination. Weak silver-silver bonding is assumed for the shortest Ag-Ag contacts of 318 pm. In AuSiP the gold atoms are in a linear coordination of one silicon (235.5 pm) and one phosphorus atom (232.6 pm). The silicon and phosphorus atoms are tetrahedrally coordinated (3Si + 1 Au and 3P + 1 Au, respectively). Thus, the elements can be assigned oxidation numbers according to the formula Au+1Si+2P-3 . This structure was also refined in the centrosymmetric space group R3̄m, but in this improper setting the silicon and phosphorus atoms occupy one crystallographic site with random occupancy.


1994 ◽  
Vol 49 (8) ◽  
pp. 1074-1080 ◽  
Author(s):  
Jörg H. Albering ◽  
Wolfgang Jeitschko

Two modifications of ThNi2P2 were prepared in a tin flux at 850 °C (α-ThNi2P2) and 1000 °C (β-ThNi2P2). The crystal structures of both modifications were refined from single­crystal X-ray data. α-ThNi2P2 (BaCu2S2 type structure): Pnma. a = 819.69(5), b = 394.28(3), c = 981.54(7) pm. R = 0.028 for 32 variables and 654 structure factors: β-ThNi2P2 (CaBe2Ge2 type structure): P4/nmm, a = 408.5(1), c = 908.0(3) pm, R = 0.033 for 15 variable parameters and 261 F values. Although the two structures are closely related, they can be transformed into each other only by a reconstructive phase transformation. The differences and similari­ties of the two structures are discussed. The high temperature form has higher symmetry, a smaller number of variable positional parameters, and a tendency for higher coordination numbers.



1993 ◽  
Vol 48 (12) ◽  
pp. 1767-1773 ◽  
Author(s):  
Sabine Niemann ◽  
Wolfgang Jeitschko

Well-crystallized samples of the rhenium aluminides Re4Al11 and ReAl6 were obtained by reaction of rhenium with an excess of aluminum. Re4Al11 was found to be isotypic with Mn4Al11. The MnAl6 type structure of ReAl6 was confirmed. The crystal structures of both compounds were refined from single-crystal X-ray data. Re4Al11:P1̄, Z = 1, a = 516.0(1) pm, b = 896.3(2) pm, c = 516.9(1) pm, a = 90.44(1)°, β = 99.76(1)°, γ = 105.17(1)°, V = 0.2271 nm3, R = 0.036 for 2315 structure factors and 74 variable parameters. ReAl6: Cmcm, Z = 4, a = 761.0(1) pm, b = 660.5(1) pm, c = 903.4(1) pm, V = 0.4541 nm3, R = 0.013 for 711F values and 23 variables. In both structures the rhenium atoms have ten aluminum neighbors at distances from 245 to 277 pm. The Al-Al distances cover the whole range from 251 to 362 pm rather continuously. The previously reported compound Re2Al with the tetragonal MoSi2-type structure has the lattice constants a = 298.1(1) pm, c = 958.4(4) pm, V = 0.08519 nm3. ReAl6 shows Pauli-paramagnetism.



1999 ◽  
Vol 54 (12) ◽  
pp. 1489-1494 ◽  
Author(s):  
Thomas J. Mormann ◽  
Wolfgang Jeitschko

The title compound was prepared by solid state reaction of Ag2O with Hg(NO3)2· H2O in air at 350 °C. Its crystal structure was determined from single-crystal diffractometer data: Pnma, a = 620.1(1) pm, b = 670.1(1) pm, c = 1267.5(2) pm, Z = 4, R = 0.026 for 586 structure factors and 33 variable parameters. The compound may be represented by the formula Ag(HgO)2NO3 . The mercury(II) together with the oxygen atoms form zig-zag chains with linear coordination of the mercury atoms. The oxygen atoms of these chains are linked via silver(I) atoms, thus forming two-dimensionally infinite nets, which contain the trigonal planar nitrate groups in interstices. Thus, only secondary Hg-O and Ag-O bond are formed between the nets.



1996 ◽  
Vol 51 (2) ◽  
pp. 249-256 ◽  
Author(s):  
Anne M. Witte ◽  
Wolfgang Jeitschko

Abstract The 14 carbides Ln3.67MnC6 (Ln = La-Nd) and Ln3.67TC6 (Ln = La-Nd, Sm; T = Fe, Ru) were prepared from the elemental components by arc-melting and subsequent annealing. Eu3.16NiC6 was obtained from a lithium flux. The crystal structures of these nearly isotypic, hexagonal compounds (P63/m, Z = 2) were determined from single-crystal X-ray data; La3.67- FeC6: a = 878.7(2), c = 535.1(1) pm, R = 0.052 for 548 structure factors and 25 variable parameters; Eu3.16NiC6: a -860.0(1), c = 548.2(2) pm, R = 0.015 for 606 structure factors and 25 variables. The structures differ from the previously reported Gd3Mn2C6 structure by the occupancy of one manganese position by rare earth atoms. Since the lanthanum atoms are larger than the manganese atoms, only two thirds of these manganese positions can be occupied by the lanthanum atoms in La3.67FeC6. Eu3.16NiC6 has similar atomic positions. The C-C bond distances in the C2 pairs are 130(2) and 126.5(5) pm in the La and Eu compounds, respectively. Magnetic susceptibility measurements with a SQUID magnetometer indicate La3.67FeC6 to be Pauli paramagnetic. A test for superconductivity was negative down to 3 K.



2001 ◽  
Vol 79 (3) ◽  
pp. 263-271
Author(s):  
Paul K Baker ◽  
Michael GB Drew ◽  
Deborah S Evans

Reaction of [WI2(CO)3(NCMe)2] with two equivalents of 1-phenyl-1-propyne (MeC2Ph) in CH2Cl2, and in the absence of light, gave the bis(1-phenyl-1-propyne) complex [WI2(CO)(NCMe)(η2-MeC2Ph)2] (1) in 77% yield. Treatment of equimolar quantities of 1 and NCR (R = Et, i-Pr, t-Bu, Ph) in CH2Cl2 afforded the nitrile-exchanged products, [WI2(CO)(NCR)(η2-MeC2Ph)2] (2-5) (R = Et (2), i-Pr (3), t-Bu (4), Ph (5)). Complexes 1, 2, and 5 were structurally characterized by X-ray crystallography. All three structures have the same pseudo-octahedral geometry, with the equatorial sites being occupied by cis and parallel alkyne groups, which are trans to the cis-iodo groups. The trans carbon monoxide and acetonitrile ligands occupy the axial sites. In structures 1 and 2, the methyl and phenyl substituents of the 1-phenyl-1-propyne ligands are cis to each other, whereas for the bulkier NCPh complex (5), the methyl and phenyl groups are trans to one another. This is the first time that this arrangement has been observed in the solid state in bis(alkyne) complexes of this type.Key words: bis(1-phenyl-1-propyne), carbonyl, nitrile, diiodo, tungsten(II), crystal structures.



1980 ◽  
Vol 35 (2) ◽  
pp. 237-238 ◽  
Author(s):  
Martin Jansen

Abstract K3NO3 and RbsNO3 were prepared by solid state reaction of equimolar mixtures of K2O/KNO2 and Rb20/RbN02, respectively. According to X-ray powder photographs their crystal structures are derived from the perovs-kite structure. K3NO3 is isostructural with Na3NO3 (a = 521.7 pm, Z = 1), Rb3NO3 represents a tetragonally distorted variant with a = 770.5, c = 550.8 pm and Z = 2.



1991 ◽  
Vol 46 (5) ◽  
pp. 566-572 ◽  
Author(s):  
Axel Gudat ◽  
Peter Höhn ◽  
Rüdiger Kniep ◽  
Albrecht Rabenau

The isotypic ternary compounds Ba3[MoN4] and Ba3[WN4] were prepared by reaction of the transition metals with barium (Ba3N2, resp.) under nitrogen. The crystal structures were determined by single crystal X-ray diffraction: Ba3[MoN4] (Ba3[WN4]): Pbca; Z = 8; a = 1083.9(3) pm (1091.8(3) pm), b = 1030.3(3) pm (1037.5(3) pm), c = 1202.9(3) pm (1209.2(4) pm). The structures contain isolated tetrahedral anions [MN4]6- (M = Mo, W) which are arranged in form of slightly distorted hexagonal layers and which are stacked along [010] with the sequence (···AB···). Two of the three Ba atoms are situated between, the third one is placed within the layers of [MN4]-groups. In this way the structures can be derived from the Na3As structure type.



1997 ◽  
Vol 52 (12) ◽  
pp. 1467-1470 ◽  
Author(s):  
Petra Wollesen ◽  
Joachim W. Kaiser ◽  
Wolfgang Jeitschko

Abstract The five compounds LnZnSbO (Ln = La - Nd, Sm) were prepared by annealing cold-pressed pellets of the lanthanoids, zinc oxide, and antimony, or by reacting these components in a NaCl/KCl flux. They crystallize with the tetragonal ZrCuSiAs type structure, which was refined from single-crystal X-ray data of CeZnSbO : P 4/nmm, a = 419.76(4), c = 947.4(1) pm, Z = 2, R = 0.022 for 165 structure factors and 12 variable parameters. Chemical bonding in this and the formally isotypic compound CeZn1-xSb2 is briefly discussed.





2019 ◽  
Vol 21 (19) ◽  
pp. 10070-10074 ◽  
Author(s):  
Kartik Pilar ◽  
Zeyu Deng ◽  
Molleigh B. Preefer ◽  
Joya A. Cooley ◽  
Raphaële Clément ◽  
...  

The complete 31P NMR chemical shift tensors for 22 inorganic phosphates obtained from ab initio computation are found to correspond closely to experimentally obtained parameters. The cases where correspondence is significantly improved upon geometry optimization point to the crystal structures requiring correction.



Sign in / Sign up

Export Citation Format

Share Document