Polysulfonylamine, CLVII [1]. Molekulare Cokristalle aus Di(4-halogenbenzolsulfonyl)aminen und Sauerstoffbasen: Lamellare Schichten mit engen Zwischenschichtkontakten der Art C-H···Hal, Cl ··· Cl oder Br ··· Br / Molecular Co-crystals of Di(4-halobenzenesulfonyl)amines and Oxygen Bases: Lamellar Layers with Close C-H···Hal, Cl · · · Cl or Br · · · Br

2002 ◽  
Vol 57 (9) ◽  
pp. 1051-1065 ◽  
Author(s):  
Thomas Hamann ◽  
Dagmar Henschel ◽  
Ilona Lange ◽  
Oliver Moers ◽  
Armand Blaschette ◽  
...  

Di(4-fluorobenzenesulfonyl)amine (DFBSA), di(4-chlorobenzenesulfonyl)amine (DCBSA) or di(4-bromobenzenesulfonyl)amine (DBBSA) were co-crystallized with equimolar amounts of pyridine-N-oxide (PyO), dimethyl formamide (DMF) or 1,3-dimethylurea (DMU), respectively, to form the supramolecular complexes DFBSA·PyO (1; triclinic, space group P1 , Z = 1), DCBSA·DMF (2; monoclinic, P21/n, Z = 1) and DBBSA·DMU (3; triclinic, P1 , Z = 1). Throughout the triad, the molecules are ordered into lamellar layers parallel to the xy plane. Owing to the folded conformations of the disulfonylamines, the layers display an inner polar region of oxygen bases and (SO2)2NH groups, outer apolar regions of aromatic rings, and interlayer regions hosting the halogen atoms. These arrays mimic the formerly reported structures of a series of ionic metal di(arenesulfonyl)amides. The intralamellar connectivity is governed by conventional hydrogen bonding and weak C-H···O bonds, the former comprising in structure 1 a very strong N-H···O-N interaction [N···O 250,9(2) pm, N-H···O 171(3)°], in 2 an N-H···O=C bond, and in 3 a set of one S2N-H···O=C and two N-H(urea)···O=S bonds. A centrosymmetric (PyO)2 dimer is present in structure 1. The juxtapositions of adjacent layers reflect halogen-specific recognition patterns (1: three short C-H···F sequences, all F···F distances beyond the van der Waals limit dW; 2: one short C-H···Cl sequence and one close Cl ··· Cl contact < dW, all other Cl ··· Cl > dW; 3: four short C-H···Br sequences and one close Br···Br contact < dW, all other Br···Br > dW). The interhalogen contacts in 2 and 3 are of the type I, as characterized by θ(C-X···X')≈ θ(C'-X' ··· X); the four angles θ lie in the range 166-175°

1983 ◽  
Vol 38 (9) ◽  
pp. 1054-1061 ◽  
Author(s):  
M. Veith ◽  
O. Recktenwald

Abstract Crystals of Sn4(NtBu)4 (1) are monoclinic, space group P21/c, with cell constants a = 1038.9(4), b = 1468.3(5), c = 1698.8(5) pm, β = 91.6(1)° and Z = 4, while those of Sn4(NtBu)3O (2) are triclinic, space group P 1̄, with dimensions a = 1293.0(5), b = 1027.1(5), c = 1716.7(9) pm, α = 90.9(1), β = 102.5(1), γ = 107.0(1)° and Z = 4. The molecules 1 are held together by van-der-Waals forces, whereas two molecules 2 interact in the crystal by weak 0→Sn donor bonds (290-332 pm) forming dimers. The outstanding structural elements of 1 and 2 are the Sn4N4 and Sn4N3O polyhedra, which can be described by two interpenetrating tetrahedra of tin atoms and of nitrogen or nitrogen and oxygen atoms forming a distorted cube, which approaches 4̄3 m symmetry in the case of 1 and 3m for 2. Characteristic distances are in 1: Sn-N 220.2 pm, in 2: Sn-N 221.3 pm and Sn-O 213.2 pm. An almost ionic bonding model and two covalent models are discussed on the basis of the structural data including Sn4(NtBu)3OAlMe3.


Author(s):  
David Z. T. Mulrooney ◽  
Helge Müller-Bunz ◽  
Tony D. Keene

The reaction of 1,5-dibromopentane with urotropine results in crystals of the title molecular salt, 5-bromourotropinium bromide [systematic name: 1-(5-bromopentyl)-3,5,7-triaza-1-azoniatricyclo[3.3.1.13,7]decane bromide], C11H22BrN4 +·Br− (1), crystallizing in space group P21/n. The packing in compound 1 is directed mainly by H...H van der Waals interactions and C—H...Br hydrogen bonds, as revealed by Hirshfeld surface analysis. Comparison with literature examples of alkylurotropinium halides shows that the interactions in 1 are consistent with those in other bromides and simple chloride and iodide species.


1997 ◽  
Vol 50 (2) ◽  
pp. 123
Author(s):  
Margaret A. Brimble ◽  
Andrew Johnston ◽  
Trevor W. Hambley ◽  
Peter Turner

The structures of (3S*,4S*,5S*,6S*)-3,4-epoxy-1,7-dioxaspiro[5.5]undecan-5-ol (2), (3R*,5S*,6S*)-1,7- dioxaspiro[5.5]undecane-3,5-diyl diacetate (4) and (4S*,5S*,6S*)-1,7-dioxaspiro[5.5]undecane-4,5-diol (5) have been determined by X-ray crystallography. The unsubstituted tetrahydropyran ring in (2) adopts an axial position with respect to the epoxy-substituted ring and the hydroxy group at C5 is syn to the epoxide group. Intermolecular hydrogen bonding is observed between the C5 hydroxy group and O1. The two six-membered rings in (4) adopt chair conformations and the two acetate groups adopt 1,3-diaxial positions. The C5 hydroxy group in (5) assumes an axial position anti to the C-O bond of the neighbouring ring whilst 4-OH occupies an equatorial position. Intermolecular hydrogen bonding is also observed between 4-OH and 5-OH. Compound (2), C9H14O4, M 186·21, crystallized in the monoclinic space group P 21/c with a 7·867(1), b 12·2060(9), c 9·3676(8) Å, b 102·744(8), V 877·4(1) Å 3 and No 1163 [I > 2·5s (I)], R 0·031, Rw 0·035. Compound (4), C13H20O6, M 272·30, crystallized in the triclinic space group P 1 with a 9·902(1), b 11·0024(9), c 6·9183(5)Å, a 104·078(8), b 96·769(9), g 101·980(8), V 703·8(1) Å 3 , No 1657 [I > 2·5s(I)], R 0·047, Rw 0·044. Compound (5), C9H16O4, M 188·22, crystallized in the orthorhombic space group Pbca with a 25·504(3), b 8·909(2), c 8·038(2) Å, V 1826·4(5) QA 3 , No 1096 [I > 2·5s(I)], R 0·030, Rw 0·030.


2000 ◽  
Vol 53 (9) ◽  
pp. 755 ◽  
Author(s):  
Kristian H. Sugiyarto ◽  
Marcia L. Scudder ◽  
Donald C. Craig ◽  
Harold A. Goodwin

Essentially high-spin [Fe(bpp)2][NCS]2·2H2O and [Fe(bpp)2][NCSe]2 (bpp = 2,6-bis(pyrazol-3-yl)pyridine) were isolated from an aqueous reaction mixture. Both salts undergo an abrupt transition to low spin below room temperature, that for the thiocyanate occurring in two steps and the high-spin Æ low-spin Æ high-spin cycle being accompanied by hysteresis in both steps. Recrystallization of the salts from nitromethane yielded a mixture from which bright yellow crystals were separated for structure determination. In addition, from the recrystallized selenocyanate, deep red-brown crystals of composition [Fe(bpp)2][NCSe]2·H2O·0.25 CH3NO2 were obtained. Recrystallized [Fe(bpp)2][NCS]2·2H2O and [Fe(bpp)2][NCSe]2 were identified as high spin with average Fe–N distances of 2.16 and 2.17 Å, respectively. In the unit cell of [Fe(bpp)2][NCSe]2·H2O·0.25 CH3NO2, there are four independent iron atoms, three identified as low spin and the fourth as high spin. All salts crystallize in a layer-type array involving edge-to-face and face-to-face aryl–aryl-type interactions. Hydrogen bonding between pyrazole >NH groups, anions and solvate molecules is observed. The structure of the uncoordinated ligand was also determined, the molecule being found in a planar arrangement with thecis–cis configuration for the pyrazolyl groups relative to the central pyridyl and the >NH group being at the N 2 atom. Hydrogen bonding involving the >NH groups leads to stepped stacks of molecules. The principal difference in the geometry of coordinated and free bpp molecules is a contraction in the angles about the interannular bridges in the chelate rings. [Fe(bpp)2][NCS]2·2H2O: triclinic, space group P1–, a 8.302(6), b 8.446(6), c 21.531(13) Å, a 78.78(5), b 82.80(5), g 89.85(4)˚, Z 2. [Fe(bpp)2][NCSe]2: triclinic, space group P1–, a 8.354(4), b 8.409(4), c 19.918(9) Å, a 87.02(3), b 83.15(3), g 88.86(3)˚, Z 2. [Fe(bpp)2][NCSe]2·H2O·0.25 CH3NO2: monoclinic, space group Pn, a 16.425(12), b 20.774(9), c 16.933(14) Å, b 90.91(4)˚, Z 8. Uncoordinated bpp: orthorhombic, space group Pna21, a 8.075(3), b 22.479(9), c 5.525(1) Å, b Z 4.


IUCrData ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Martha Höhne ◽  
Anke Spannenberg ◽  
Bernd H. Müller ◽  
Uwe Rosenthal

The title compound, C18H36N2P2, crystallizes in the triclinic space groupP-1 with two independent molecules in the asymmetric unit. Both molecules adopt atransconfiguration of the tetramethylpiperidine units along the P=P axis. The crystal packing is stabilized only by van der Waals interactions.


2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
Rina Mondal ◽  
Nayim Sepay ◽  
Debajyoti Ghoshal ◽  
Asok K. Mallik

Single crystal X-ray diffraction of two macrocyclic bischalcones, namely, (2E,25E)-11,17,33,37-tetraoxapentacyclo[36.4.0.05,10.018,23.027,32]dotetraconta-1(42),2,5,7,9,18,20,22,25,27,29,31,38,40-tetradecaene-4,24-dione(1) and (2E,24E)-11,16,32,37-tetraoxapentacyclo[36.4.0.05,10.017,22.026,31]dotetraconta-1(42),2,5,7,9,17,19,21,24,26,28,30,38,40-tetradecaene-4,23-dione(2), each containing a 26-membered ring, has been studied. Compound 1 belongs to the monoclinic system, space group C2/c with a = 34.3615(9) Å, b = 12.7995(3) Å, c = 14.6231(3) Å, β = 96.912(2)°,  V = 6,384.6(3) Å3, and Z = 8. Compound 2 is triclinic, space group P-1 with a = 10.066(2) Å, b = 10.670(3) Å, c = 16.590(3) Å, α = 85.95(2), β = 89.244(14), γ = 62.211(13), V = 1572.0(6) Å3, and Z = 2. Intermolecular C–H⋯O hydrogen bonding interactions are present in both compounds.


2011 ◽  
Vol 66 (9) ◽  
pp. 899-904
Author(s):  
Zhan-Lin Xu ◽  
Yu He ◽  
Hui-Lian Wang

Two new coordination polymers, [Pb(L)(1,3-bdc)] ·2.5H2O (1) and [Cu(L)(1,4-bdc)] (2) (L = 2- (4-fluorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline; 1,3-bdc, 1,4-bdc = 1,3- and 1,4-benzenedicarboxylate), have been hydrothermally synthesized and characterized by elemental analysis, IR spectra and single-crystal X-ray diffraction. Crystal data for 1: C54H40F2N8O13Pb2, triclinic, space group P¯1, a = 9.3468(19), b = 9.4607(14), c = 15.581(3) Å , α = 90.44(4), β = 101.13(3), γ = 113.97(3)°, V = 1229.6(4) Å3, Z = 1. Crystal data for 2: C27H15CuFN4O4, triclinic, space group P1¯, a = 9.640(6), b = 10.941(8), c = 11.865(5) Å , α = 62.694(4), β = 69.776(3), γ = 79.915(5)◦, V = 1043.2(11) Å3, Z = 2. In 1, the Pb(II) atoms are bridged by the 1,3-bdc ligands to yield a chain structure. The ligands L are only located on one side of the chain, where π · · ·π interactions among neighboring chains result in a supramolecular ladder, and the O-H· · ·O hydrogen bonding interactions further stabilize this structure. Compound 2 shows a layer structure, with stacking by π-π interactions to give a three-dimensional (3D) supramolecular architecture. N-H· · ·O hydrogen bonding further stabilizes the structure of 2.


IUCrData ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Carly R. Reed ◽  
Robert N. Garner ◽  
William W. Brennessel

The title compound, [Ru(C5H6N2)(C10H8N2)(C15H11N3)](PF6)2 solvent, crystallizes in the triclinic space group P\overline{1} with one dicationic Ru complex, two PF6 − anions, and undefined solvent in the asymmetric unit. The cation and anions are linked via N—H...F hydrogen bonding. One PF6 − anion is disordered over two positions, with occupancies 0.634 (8) and 0.366 (8). The solvent, which is located in channels in the crystal, is highly disordered. Reflection contributions from the solvent were added to the calculated structure factors using the SQUEEZE routine [Spek (2015) Acta Cryst. C71, 9–18] of the program PLATON, which determined there to be 59 electrons in 264 Å3 treated this way per unit cell. Because the exact identity and amount of solvent were unknown, no solvent was included in the atom list or molecular formula.


1995 ◽  
Vol 50 (7) ◽  
pp. 1018-1024 ◽  
Author(s):  
Axel Michalides ◽  
Dagmar Henschel ◽  
Armand Blaschette ◽  
Peter G. Jones

In a systematic search for supramolecular complexes involving all combinations of the cyclic polyethers 12-crown-4 (12C4), 15-crown-5 (15C 5), 18-crown-6 (18C 6) and dibenzo- 18-crown-6 (DB -18C6), and the geminal di- or trisulfones H2C(SO 2Me)2, H2C (SO2Et)2 and HC (SO2Me)3-n (SO2Et)n (n = 0 -3 ) , only the following four complexes could be isolated and unequivocally characterized by elemental analysis and 1H NMR spectroscopy: [(12C4){H2C (SO2Et)2}2] (3), [(18C6){H2C (S O2Me)2}] (4), [(DB -18C 6){H2C (SO2Et)2}] (5) and [(D B -18C 6)2{HC (SO2Me )(SO2Et)2}3] (6). The structure of 3 (triclinic, space group P1̄) consists of crystallographically centrosymmetric formula units, in which the disulfone molecules are bonded on each side of the ring by two C -H ··· O(crown) interactions originating from the central methylene group (H···O 213 pm) and from the methylene group of one EtSO2 moiety ( H ··· O 237 pm). Formula units related by translation are connected into parallel strands by a third type of reciprocal C -H ···O bond (H ···O 232 pm) between the second H atom of the central methylene group and a sulfonyl oxygen atom of the adjacent unit. The structure of 4 (monoclinic, space group C2/c) showed severe disorder of the crown ether and could not be refined satisfactorily. Compounds 5 and 6 crystallized as long and extremely thin fibres, indicative of linear-polymeric supramolecular structures; single crystals for X-ray crystallography were not available.


ACS Photonics ◽  
2021 ◽  
Author(s):  
Hyemin Bae ◽  
Suk Hyun Kim ◽  
Seungmin Lee ◽  
Minji Noh ◽  
Ouri Karni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document