Orthoamide, LXIX [1]. Beiträge zur Synthese N,N,N´,N´,N´´-peralkylierter Guanidine und N,N,N´,N´,N´´䞲,N´´-persubstituierter Guanidiniumsalze / Orthoamides, LXIX [1]. Contributions to the Synthesis of N, N, N´, N´, N´-peralkylated Guanidines and N, N, N´, N´, N´´, N´´-persubstituted Guanidinium Salts

2010 ◽  
Vol 65 (7) ◽  
pp. 873-906 ◽  
Author(s):  
Willi Kantlehner ◽  
Jochen Mezger ◽  
Ralf Kreß ◽  
Horst Hartmann ◽  
Thorsten Moschny ◽  
...  

N, N, N´, N´-Tetraalkyl-chloroformamidinium chlorides 6 are prepared from N, N, N´, N´-tetraalkylureas 5 and phosgene in acetonitrile. The iminium salts 6 react with primary and secondary amines in the presence of triethylamine to give N, N, N´, N´, N´´-pentasubstituted and N, N, N´, N´, N´´, N´´- hexasubstituted guanidinium salts 7 and 8, respectively, Treatment of the guanidinium salts 7 with sodium hydroxide in excess affords the N, N, N´N´, N´´-pentasubstituted guanidines 9a - 9aa. Additionally, the N, N, N´, N´, N´´-pentasubstituted and N, N, N´, N´, N´´, N´´-hexasubstituted guanidinium salts 7l´, 7p´ and 8a - c can be obtained from the reaction mixtures by addition of stoichiometric amounts of sodium hydroxide. A modified method is described for the preparation of guanidinium salts possessing dialkylamino substituents consisting of two long-chain alkyl groups (>C14). Some guanidines 9 were alkylated with allyl chloride and bromide, ethyl bromide, butyl bromide, benzyl bromide and chloride, dimethyl sulfate, diethyl sulfate, and methyl methansulfonate to give the corresponding guanidinium salts 11 - 15. By alkylation of the N, N, N´, N´, N´´-pentasubstituted guanidine 9v with triethyloxonium tetrafluoroborate the guandinium tetrafluoroborate 16a is accessible. N-Functionalized guanidinium salts 17 - 18a - c result from the reaction of N, N, N´, N´, N´´-pentasubstituted guanidines with ethyl bromoacetate and bromoacetonitrile, respectively, and subsequent anion exchange with sodium tetraphenylborate. N, N, N´, N´-Tetramethylguanidine (21) adds to ethyl acrylate to give the labile guanidine 22, which forms the guanidinium salt 23a on treatment with methyl iodide. Zwitterionic guanidinium salts 25 result, when N, N, N´, N´, N´´-pentasubstituted guanidines are treated with sultones 24.

2020 ◽  
Vol 75 (6-7) ◽  
pp. 665-684
Author(s):  
Willi Kantlehner ◽  
Ioannis Tiritiris ◽  
Markus Vettel ◽  
Wolfgang Frey

AbstractN,N,N′,N′-Tetraalkylchlorformamidiniumchlorides 1a, b react with ω-dimethylaminoalkylamines 19, 20 to give mixtures of N-(ω-dimethylammonioalkyl)-guanidinium salts 12, 13 and N-(ω-dimethylaminoalkyl)-guanidinium salts 21, 22. These mixtures are transformed to mixtures of the ureas 15, 17 and N-(ω-dimethylaminoalkyl)-guanidines 23, 25 on treatment with aqueous sodium hydroxide. The reaction of N-(3-dimethylammoniopropyl)-guanidin 25a with dimethylsulfate in a molar ratio of 1:1 delivers a mixture of the N-(3-dimethylaminopropyl)-N,N,N′,N′,N″,N″-pentamethyl-guanidinium salt 29a and the N-(3-dimethylammoniopropyl)-N,N′,N′,N″,N″-pentamethyl-guanidinium-bis (methylsulfate) 33a. The action of dimethylsulfate on the guanidines 23a, 25a in a molar ratio of 2:1 affords the bisquarternary salts 32a, 33a. Alkylating reagents as methyliodide, benzylbromide, allylbromide and chloroacetonitrile attack N-(2-dimethylaminoethyl)-N′,N′,N″,N″-tetraethylguanidine (23b) in a molar ratio of 1:1 cleanly at the dimethylaminoethylgroup to give the ammonium salts 30a–d. As a strong base the guanidine 23b dehydrochlorinates β-Chlorpropionitrile and chloroacetone under formation of the guanidinium salt 21c. In contrast to this the reaction of ethyl bromoacetate with the N-(2-dimethylaminoethyl)guanidine 23b occurs at the guanidinogroup giving the guanidinium salt 28c. The methylation of the guanidinium chlorides 21a, 22a with dimethyl sulfate affords the bis-quaternary salts 35b, 36b with mixed anions. From the heterocyclic guanidines 14, 16 and the alkylating reagents benzylbromide and ethyl bromoacetate the heterocyclic guanidinium salts 37a, b, 39a, b can be obtained. The reactions with ethyl chloroformiate proceed in an analogous way giving the guanidinium salts 37c, 39c. The N-alkyl-N,N,N′,N′-tetramethyl-(3-ureidopropyl)guanidinium salts 41a, b can be prepared from the N′,N′,N″,N″-tetramethyl-N′′-(3-ureidopropyl) guanidine 17a and the alkylating compounds dimethyl sulfate and benzyl bromide. Several compounds obtained that way were transformed to the corresponding tetraphenyloborates and bis(tetraphenylborates), respectively.


1983 ◽  
Vol 66 (5) ◽  
pp. 1230-1233
Author(s):  
Athanasios E Tirpenou ◽  
Stylianos D Kilikidis ◽  
Athanasios P Kamarianos

Abstract A gas-liquid chromatographic (GLC) method with electron capture (EC) detection was developed fof determining diethylstilbestrol residues in the urine of fattened bulls. Diethylstilbestrol (DES) is extracted into benzene, and then into IN sodium hydroxide. The pH of the phenolic fraction (alkaline phase) is adjusted to 10.2 and DES is extracted again into benzene. Sample extracts are cleaned up on silica gel. Trifluoroacetic anhydride (TFAA) is used as acylation reagent, and the derivatized sample is chromatographed on a 3% OV-17 column and measured with a 63Ni EC detector. The method is suitable for determining residues at levels as low as 2 ppb.


Synthesis ◽  
1991 ◽  
Vol 1991 (09) ◽  
pp. 703-708 ◽  
Author(s):  
Alan R. Katritzky ◽  
Xiaohong Zhao ◽  
Gregory J. Hitchings

Author(s):  
MUHAMMAD HERPI AKBAR ◽  
HARMITA ◽  
HERMAN SURYADI

Objective: This study aim to obtain the optimum condition of preparation of hydroxypropyl methylcellulose (HPMC) produced from α-cellulose betung bamboo, physicochemical properties of HPMC powder and its characteristics in a gel formulation. Methods: HPMC of betung bamboo (HPMC BB) were optimized by central composite design (CCD) using three variables (sodium hydroxide concentration, dimethyl sulfate concentration, and temperature) and five levels (0,±1, and±α). The suggested optimum condition was subjected to further characterization. HPMC BB was characterized using Fourier transform infrared (FTIR) spectrometry, particle size analyzer (PSA), x-ray diffraction (XRD), scanning electron microscope (SEM) and compared to HPMC 60SH as the reference. Then, HPMC BB was used as a gelling agent in a gel formulation and the gel was evaluated, including appearance and homogeneity, pH, viscosity, and spreadability. Results: Optimum condition of preparation of HPMC BB was using sodium hydroxide 27.68% (w/v) and 1.26 ml dimethyl sulfate (based on 1 g α-cellulose) at 58.11 °C which resulted in molar substitution 0.21 and degree of substitution 2.09. The results showed that HPMC BB was a fine powder with yellowish-white color, odorless and tasteless, pH 7.02, residue on ignition 1.39%, methoxy groups content 28.56%, hydroxypropoxy groups content 7.09%, mean particle size 98.595 μm, loss on drying 3.62%, and moisture content 7.47%. Flow properties of HPMC BB classified in the fair category. The infrared spectrum and diffraction patterns were relatively similar to HPMC 60SH. The gel has a good homogeneity and spreadability and viscosity 142.5 mPa⋅s. pH 6.37. Conclusion: Based on the comparison to reference, HPMC BB showed relatively similar physicochemical and powder properties. However, HPMC BB is not recommended as a gelling agent in gel formulation because it has a low viscosity.


2012 ◽  
Vol 67 (4) ◽  
pp. 373-388
Author(s):  
Willi Kantlehner ◽  
Markus Vettel ◽  
Bernhard Eppinger

An improved procedure for the preparation of trimethoxyacetonitrile (3a) starting from trichloroacetonitrile and sodium methanolate is described. Carbanions, obtained by the action of sodium hydride on nitriles, ethyl acetate and methylketones, react with trialkoxyacetonitriles 3 to give α- imino-orthocarboxylic acid trialkylesters 12, 14 and 20, which form an equilibrium with the tautomeric enamines 13, 15 and 21. The enamines 21 react with N,N-dimethylformamide dimethylacetal (24) to give amidines 25 which are cyclized to pyridinium salts 28 and 29 on treatment with benzyl bromide and acetyl chloride, respectively. The reaction of the enaminonitrile 13a with the orthoamide derivative of phenylpropiolic acid 30 affords the pyridine-2-orthocarboxylic acid trimethylester 31. The N,O-protected 4-hydroxy-piperidine 35 can be deprotonated by means of sec-butyl lithium. The carbanions thus formed are trapped with D2O, dimethyl sulfate, phenylisocyanate, CO2, and dimethyl carbonate delivering the piperidine derivatives 37 - 41. The heterocyclic orthoester 43 can be prepared analogously from 35 and 3a. The piperidine derivatives 44, 46 and 47 are prepared from the N,O-protected piperidines 39 and 41.


2019 ◽  
Vol 8 (3) ◽  
pp. 239-244
Author(s):  
Muhammad Idham Darussalam Mardjan ◽  
◽  
Dhina Fitriastuti ◽  
Bambang Purwono ◽  
Jumina Jumina ◽  
...  

This study describes simple synthetic method to prepare 1-(2-methoxybenzyl)-1,10-phenanthrolin-1-ium bromide from gandapura oil. The salt were synthesized in four steps. Initially, commercial gandapura oil was directly subjected to the alkylation reaction under basic condition using dimethyl sulfate to give methyl 2-methxybenzoate in 86% yield. Next, the produced benzoate ester was reduced by LiAlH4 to produce 2-methoxybenzyl alcohol in 67% yield. The treatment of benzyl alcohol with phosphorus tribromide under solvent free condition produced the corresponding benzyl bromide (in 67% yield), which was directly introduced into bimolecular nucleophilic substitution reaction with 1,10-phenantroline monohydrate to finally give the desired product in 63% yield.


ChemInform ◽  
2009 ◽  
Vol 40 (50) ◽  
Author(s):  
Vasiliy M. Muzalevskiy ◽  
Valentine G. Nenajdenko ◽  
Alexander Yu. Rulev ◽  
Igor A. Ushakov ◽  
Galina V. Romanenko ◽  
...  

2005 ◽  
Vol 83 (9) ◽  
pp. 1525-1535 ◽  
Author(s):  
James F King ◽  
Manjinder S Gill ◽  
Petru Ciubotaru

We have determined pH–yield profiles under pseudo-first-order conditions of the reactions of benzenesulfonyl chloride with a set of primary and secondary water-soluble alkylamines, and have found with certain amines, such as dibutylamine, a profile taking the form of a sigmoid pH&#150yield curve with relatively high yields of the sulfonamide persisting with increasing basicity up to and including 1.0 mol/L sodium hydroxide. This behaviour is quantitatively accounted for by invoking, in addition to the usual second-order reaction of the sulfonyl chloride with the amine, two third-order terms (i) one first-order in sulfonyl chloride, amine and hydroxide anion, and (ii) another first-order in sulfonyl chloride and second-order in the amine. The importance of the third-order terms correlates approximately with the total number of alkyl carbon atoms in the amine, and this in turn is regarded as related to the hydrophobic character of the amine. Experiments to test this picture included: (i) observation of a bell-shaped curve with bis(2-methoxyethyl)amine, (ii) in the reaction of dibutylamine in THF&#150H2O (1:1), and also (iii) in the reaction of dibutylamine in 1.0 mol/L tetrabutylammonium bromide, and (iv) increase in the contributions of the third-order terms in 1.0 mol/L aqueous sodium chloride. Preparative reactions with dibutylamine, 1-octylamine, and hexamethylenimine in 1.0 mol/L aqueous sodium hydroxide with a 5% excess of benzenesulfonyl chloride gave, respectively, 94%, 98%, and 97% yields of the corresponding sulfonamides. Key words: sulfonyl chlorides, primary and secondary amines, pH–yield profiles, organic synthesis in water, hydrophobic effects.


Sign in / Sign up

Export Citation Format

Share Document