Two new ternary chalcogenides Ba2ZnQ3 (Q = Se, Te) with chains of ZnQ4 tetrahedra: syntheses, crystal structure, and optical and electronic properties

2016 ◽  
Vol 71 (5) ◽  
pp. 425-429 ◽  
Author(s):  
Jai Prakash ◽  
Adel Mesbah ◽  
Jessica Beard ◽  
Dario Rocca ◽  
Sébastien Lebègue ◽  
...  

AbstractSingle crystals of Ba2ZnQ3 (Q = Se, Te) were obtained by solid-state reactions at 1173 K. These isostructural compounds crystallize in the K2AgI3 structure type. The Zn atoms in this structure are coordinated to four Q atoms (2 Q1, 1 Q2, 1 Q3) and these form a distorted tetrahedron around each Zn atom. Each ZnQ4 tetrahedron shares two corners with neighboring ZnQ4 tetrahedra resulting in the formation of infinite chains of [ZnQ44−] units. The absorption spectrum of a single crystal of Ba2ZnTe3 shows an absorption edge at 2.10(2) eV, consistent with the dark-red color of the crystals. From DFT calculations Ba2ZnSe3 and Ba2ZnTe3 are found to be semiconductors with electronic band gaps of 2.6 and 1.9 eV, respectively.

Author(s):  
Ines Fitouri ◽  
Habib Boughzala

Potassium sodium copper(II) diphosphate(V), KNaCuP2O7, was synthesized by solid-state reactions. It crystallizes in the α-Na2CuP2O7 structure type in space group P21/n. In the crystal, CuO5 square-pyramids are linked to nearly eclipsed P2O7 groups by sharing corners to build up corrugated layers with composition [CuP2O7]2− that extend parallel to (010). The K+ and Na+ cations reside in the interlayer space and are connected to nine and seven O atoms, respectively. The structural model was validated by bond-valence-sum (BVS) and charge-distribution (CHARDI) analysis.


1996 ◽  
Vol 51 (4) ◽  
pp. 489-492 ◽  
Author(s):  
J. Feldmann ◽  
Hk. Müller-Buschbaum

Abstract Single crystals of Ba2(VO)V2O8 have been prepared by solid state reactions of Ba2V2O7, V2O3 and V2O5 in sealed silica tubes. This compound crystallizes with monoclinic symmetry, space group C22 -P21, a = 8.1174(9), b = 5.9699(9), c = 9.2903(9) Å , β = 113.94(1)°, Z = 2. V 5+ shows tetrahedral coordination. V 4+ inside 1∞ [V (3)O4] chains is characterized by a square pyramidal coordination with a short apical V-O distance of 1.6 Å typically for vanadyl groups. Ba2(VO)V2O8 represents a new structure type and is not isotypic to Sr2(VO)V2O8.


1997 ◽  
Vol 52 (5) ◽  
pp. 663-668 ◽  
Author(s):  
B. Mertens ◽  
Hk. Müller-Buschbaum

Abstract Single crystals of I RbCd4V3O12 and TlCd4V3O12 II have been prepared by solid state reactions in closed iron tubes. The compounds crystallize closely related to the Johillerite structure in the space group C62h- C2/c with I: a = 13.058(3); b - 13.528(3), c = 7 .0 6 0 (2 )Å , β = 114.88(2)°; II: a = 12.999(6), b = 13.527(7), c = 7.055(3) Å , β = 114.88(4)°, Z = 4. Special features are the loss of Cu2+ in order to gain an additional Cd2+ position. The crystal structure is discussed with respect to related compounds of the Johillerite type.


1996 ◽  
Vol 51 (10) ◽  
pp. 1407-1410 ◽  
Author(s):  
B. Wedel ◽  
Hk. Müller-Buschbaum

Single crystals of Ba2Nb2TeO10) have been prepared by solid state reactions in air. X-ray investigations led to orthorhombic symmetry, space group D152h-Pbca, a = 7.242(4), b = 12.433(3), c = 9.932(3) Å. Z = 4. Nb5+ and Te6+ show octahedral coordination by O2- . The crystal structure is characterized by planes of edge- and corner-sharing NbO6- and TeO6octahedra. It is shown that in spite of nearly identical lattice constants of Ba2Nb2TeO10 with compounds of the composition M0,5BaNbTe2O9 the so far unknown crystals of these substances may not be derived from the Ba2Nb2TeO10 type.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sviatoslav Baranets ◽  
Alexander Ovchinnikov ◽  
Svilen Bobev

Abstract A new quaternary germanide has been synthesized and structurally characterized. BaLi2Cd2Ge2 adopts the rhombohedral CaCu4P2 structure type (Pearson code hR7; space group R 3 ‾ m $R‾{3}m$ , Z = 3) with unit cell parameters a = 4.5929(6) and c = 26.119(5) Å. Structure refinements from single-crystal X-ray diffraction data demonstrate that the layered crystal structure can be regarded as an ordered quaternary variant of the ternary archetype; structural parallels to layered pnictides and binary germanides can also be drawn. The layered crystal structure is characterized by the absence of direct Ge–Ge and Cd–Cd homoatomic bonds, which suggests that BaLi2Cd2Ge2 should be classified as a Zintl phase, according to the formulation (Ba2+)(Li+)2(Cd2+)2(Ge4−)2. Electronic structure calculations show that the Fermi level crosses a distinct peak in the DOS, although the presence of an electronic band gap or a dip in the electronic density of states at the Fermi level is expected based on the electron partitioning.


1997 ◽  
Vol 52 (8) ◽  
pp. 989-993 ◽  
Author(s):  
B Mertens ◽  
Hk Müller-Buschbaum

Single crystals of Ba2,5Cd11(VO4)9 have been prepared by solid state reactions. The new compound crystallizes with orthorhombic symmetry, space group D142h-Pbcn, a = 20.842(6), b = 13.471(3), c = 11.838(9) Å, Z = 4. The crystal structure is characterized and dominated by CdO6 octahedra and unusual square pyramids of O2- around Cd2+ forming a three-dimensional [Cd11O36] network. The interstices are occupied by V5+ and Ba2+ ions. This results in VO4 tetrahedra and irregular BaO10 polyhedra isolated from each other. Occupation of the barium positions is deficient in agreement with the valence state V5+ and calculations of the coulomb terms of lattice energy.


2020 ◽  
Vol 151 (9) ◽  
pp. 1317-1328
Author(s):  
Matthias Weil ◽  
Berthold Stöger

Abstract The caesium phosphates Cs3(H1.5PO4)2(H2O)2 and Cs3(H1.5PO4)2 were obtained from aqueous solutions, and Cs4P2O7(H2O)4 and CsPO3 from solid state reactions, respectively. Cs3(H1.5PO4)2, Cs4P2O7(H2O)4, and CsPO3 were fully structurally characterized for the first time on basis of single-crystal X-ray diffraction data recorded at − 173 °C. Monoclinic Cs3(H1.5PO4)2 (Z = 2, C2/m) represents a new structure type and comprises hydrogen phosphate groups involved in the formation of a strong non-symmetrical hydrogen bond (accompanied by a disordered H atom over a twofold rotation axis) and a very strong symmetric hydrogen bond (with the H atom situated on an inversion centre) with symmetry-related neighbouring anions. Triclinic Cs4P2O7(H2O)4 (Z = 2, P$$\bar{1}$$ 1 ¯ ) crystallizes also in a new structure type and is represented by a diphosphate group with a P–O–P bridging angle of 128.5°. Although H atoms of the water molecules were not modelled, O···O distances point to hydrogen bonds of medium strengths in the crystal structure. CsPO3 is monoclinic (Z = 4, P21/n) and belongs to the family of catena-polyphosphates (MPO3)n with a repetition period of 2. It is isotypic with the room-temperature modification of RbPO3. The crystal structure of Cs3(H1.5PO4)2(H2O)2 was re-evaluated on the basis of single-crystal X-ray diffraction data at − 173 °C, revealing that two adjacent hydrogen phosphate anions are connected by a very strong and non-symmetrical hydrogen bond, in contrast to the previously described symmetrical bonding situation derived from room temperature X-ray diffraction data. In the four title crystal structures, coordination numbers of the caesium cations range from 7 to 12. Graphic abstract


1994 ◽  
Vol 49 (11) ◽  
pp. 1463-1466 ◽  
Author(s):  
D. Frerichs ◽  
Hk. Müller-Buschbaum

Single crystals of KCo3Cu(As2.58V0.42)O12 were prepared by solid state reactions below the melting point of the reaction mixture (K2CO3, CuO, COC2O4, V2O5 and 3 As2O5 · 5H2O). It crystallizes with monoclinic symmetry, space group C62h-C2/c, a = 12.207, b = 12.730, c = 6.811 Å, β = 113.69°, Z = 4. The structure type is characterized by isolated twisted-square CuO4-polygons, CoO6-octahedra and a special 4+4-coordination of the potassium ion. As5+ and V5+ are in tetrahedral coordination with a partly statistical distribution of these ions.


1997 ◽  
Vol 52 (5) ◽  
pp. 643-646 ◽  
Author(s):  
M. Staack ◽  
Hk. Müller-Buschbaum

Abstract The compound Co6O2 [TeO4(CoAsO5)2] has been prepared by solid state reactions. Single crystal X -ray techniques led to orthorhombic symmetry, space group D 182h-Cmca, a = 6.020(1), b = 23.763(5), c = 8.841(2) Å , Z = 4. The new structure type contains the hitherto unknown cobaltoarsenate group CoAsO7, oxidic oxygen connected exclusively to cobalt, and TeO6 octahedra.


2015 ◽  
Vol 70 (4) ◽  
pp. 279-282 ◽  
Author(s):  
Raphael J.F. Berger ◽  
Surajit Jana ◽  
Roland Fröhlich ◽  
Norbert W. Mitzel

AbstractA mixed lithium/beryllium diethylhydroxylaminate compound containing nbutyl beryllium units of total molecular composition nBe(ONEt2)2 [(LiONEt2)2nBuBeONEt2]2 (1) was isolated from a reaction mixture of nbutyl lithium, N,N-diethylhydroxylamine and BeCl2 in diethylether/thf. The crystal structure of 1 has been determined by X-ray diffraction. The aggregate is composed of two ladder-type subunits connected in a beryllium-centered distorted tetrahedron of four oxygen atoms. Only the lithium atoms are engaged in coordination with the nitrogen donor atoms. The DFT calculations support the positional occupation determined for Li and Be in the crystal structure. The DFT and the solid-state structure are in excellent agreement, indicating only weak intermolecular interactions in the solid state. Structural details of metal atom coordination are discussed.


Sign in / Sign up

Export Citation Format

Share Document